8,016 research outputs found

    Support Vector Methods for Higher-Level Event Extraction in Point Data

    Get PDF
    Phenomena occur both in space and time. Correspondingly, ability to model spatiotemporal behavior translates into ability to model phenomena as they occur in reality. Given the complexity inherent when integrating spatial and temporal dimensions, however, the establishment of computational methods for spatiotemporal analysis has proven relatively elusive. Nonetheless, one method, the spatiotemporal helix, has emerged from the field of video processing. Designed to efficiently summarize and query the deformation and movement of spatiotemporal events, the spatiotemporal helix has been demonstrated as capable of describing and differentiating the evolution of hurricanes from sequences of images. Being derived from image data, the representations of events for which the spatiotemporal helix was originally created appear in areal form (e.g., a hurricane covering several square miles is represented by groups of pixels). ii Many sources of spatiotemporal data, however, are not in areal form and instead appear as points. Examples of spatiotemporal point data include those from an epidemiologist recording the time and location of cases of disease and environmental observations collected by a geosensor at the point of its location. As points, these data cannot be directly incorporated into the spatiotemporal helix for analysis. However, with the analytic potential for clouds of point data limited, phenomena represented by point data are often described in terms of events. Defined as change units localized in space and time, the concept of events allows for analysis at multiple levels. For instance lower-level events refer to occurrences of interest described by single data streams at point locations (e.g., an individual case of a certain disease or a significant change in chemical concentration in the environment) while higher-level events describe occurrences of interest derived from aggregations of lower-level events and are frequently described in areal form (e.g., a disease cluster or a pollution cloud). Considering that these higher-level events appear in areal form, they could potentially be incorporated into the spatiotemporal helix. With deformation being an important element of spatiotemporal analysis, however, at the crux of a process for spatiotemporal analysis based on point data would be accurate translation of lower-level event points into representations of higher-level areal events. A limitation of current techniques for the derivation of higher-level events is that they imply bias a priori regarding the shape of higher-level events (e.g., elliptical, convex, linear) which could limit the description of the deformation of higher-level events over time. The objective of this research is to propose two newly developed kernel methods, support vector clustering (SVC) and support vector machines (SVMs), as means for iii translating lower-level event points into higher-level event areas that follow the distribution of lower-level points. SVC is suggested for the derivation of higher-level events arising in point process data while SVMs are explored for their potential with scalar field data (i.e., spatially continuous real-valued data). Developed in the field of machine learning to solve complex non-linear problems, both of these methods are capable of producing highly non-linear representations of higher-level events that may be more suitable than existing methods for spatiotemporal analysis of deformation. To introduce these methods, this thesis is organized so that a context for these methods is first established through a description of existing techniques. This discussion leads to a technical explanation of the mechanics of SVC and SVMs and to the implementation of each of the kernel methods on simulated datasets. Results from these simulations inform discussion regarding the application potential of SVC and SVMs

    Self-Organizing Time Map: An Abstraction of Temporal Multivariate Patterns

    Full text link
    This paper adopts and adapts Kohonen's standard Self-Organizing Map (SOM) for exploratory temporal structure analysis. The Self-Organizing Time Map (SOTM) implements SOM-type learning to one-dimensional arrays for individual time units, preserves the orientation with short-term memory and arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM attempts thus twofold topology preservation, where the horizontal direction preserves time topology and the vertical direction data topology. This enables discovering the occurrence and exploring the properties of temporal structural changes in data. For representing qualities and properties of SOTMs, we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world setting is shown on poverty, welfare and development indicators

    Development and Applications of Similarity Measures for Spatial-Temporal Event and Setting Sequences

    Get PDF
    Similarity or distance measures between data objects are applied frequently in many fields or domains such as geography, environmental science, biology, economics, computer science, linguistics, logic, business analytics, and statistics, among others. One area where similarity measures are particularly important is in the analysis of spatiotemporal event sequences and associated environs or settings. This dissertation focuses on developing a framework of modeling, representation, and new similarity measure construction for sequences of spatiotemporal events and corresponding settings, which can be applied to different event data types and used in different areas of data science. The first core part of this dissertation presents a matrix-based spatiotemporal event sequence representation that unifies punctual and interval-based representation of events. This framework supports different event data types and provides support for data mining and sequence classification and clustering. The similarity measure is based on the modified Jaccard index with temporal order constraints and accommodates different event data types. This approach is demonstrated through simulated data examples and the performance of the similarity measures is evaluated with a k-nearest neighbor algorithm (k-NN) classification test on synthetic datasets. These similarity measures are incorporated into a clustering method and successfully demonstrate the usefulness in a case study analysis of event sequences extracted from space time series of a water quality monitoring system. This dissertation further proposes a new similarity measure for event setting sequences, which involve the space and time in which events occur. While similarity measures for spatiotemporal event sequences have been studied, the settings and setting sequences have not yet been considered. While modeling event setting sequences, spatial and temporal scales are considered to define the bounds of the setting and incorporate dynamic variables along with static variables. Using a matrix-based representation and an extended Jaccard index, new similarity measures are developed to allow for the use of all variable data types. With these similarity measures coupled with other multivariate statistical analysis approaches, results from a case study involving setting sequences and pollution event sequences associated with the same monitoring stations, support the hypothesis that more similar spatial-temporal settings or setting sequences may generate more similar events or event sequences. To test the scalability of STES similarity measure in a larger dataset and an extended application in different fields, this dissertation compares and contrasts the prospective space-time scan statistic with the STES similarity approach for identifying COVID-19 hotspots. The COVID-19 pandemic has highlighted the importance of detecting hotspots or clusters of COVID-19 to provide decision makers at various levels with better information for managing distribution of human and technical resources as the outbreak in the USA continues to grow. The prospective space-time scan statistic has been used to help identify emerging disease clusters yet results from this approach can encounter strategic limitations imposed by the spatial constraints of the scanning window. The STES-based approach adapted for this pandemic context computes the similarity of evolving normalized COVID-19 daily cases by county and clusters these to identify counties with similarly evolving COVID-19 case histories. This dissertation analyzes the spread of COVID-19 within the continental US through four periods beginning from late January 2020 using the COVID-19 datasets maintained by John Hopkins University, Center for Systems Science and Engineering (CSSE). Results of the two approaches can complement with each other and taken together can aid in tracking the progression of the pandemic. Overall, the dissertation highlights the importance of developing similarity measures for analyzing spatiotemporal event sequences and associated settings, which can be applied to different event data types and used for data mining, sequence classification, and clustering

    Identifying and understanding road-constrained areas of interest (AOIs) through spatiotemporal taxi GPS data: A case study in New York City

    Get PDF
    Urban areas of interest (AOIs) represent areas within the urban environment featuring high levels of public interaction, with their understanding holding utility for a wide range of urban planning applications. Within this context, our study proposes a novel space-time analytical framework and implements it to the taxi GPS data for the extent of Manhattan, NYC to identify and describe 31 road-constrained AOIs in terms of their spatiotemporal distribution and contextual characteristics. Our analysis captures many important locations, including but not limited to primary transit hubs, famous cultural venues, open spaces, and some other tourist attractions, prominent landmarks, and commercial centres. Moreover, we respectively analyse these AOIs in terms of their dynamics and contexts by performing further clustering analysis, formulating five temporal clusters delineating the dynamic evolution of the AOIs and four contextual clusters representing their salient contextual characteristics

    Cell Towers as Urban Sensors: Understanding the Strengths and Limitations of Mobile Phone Location Data

    Get PDF
    Understanding urban dynamics and human mobility patterns not only benefits a wide range of real-world applications (e.g., business site selection, public transit planning), but also helps address many urgent issues caused by the rapid urbanization processes (e.g., population explosion, congestion, pollution). In the past few years, given the pervasive usage of mobile devices, call detail records collected by mobile network operators has been widely used in urban dynamics and human mobility studies. However, the derived knowledge might be strongly biased due to the uneven distribution of people’s phone communication activities in space and time. This dissertation research applies different analytical methods to better understand human activity and urban environment, as well as their interactions, mainly based on a new type of data source: actively tracked mobile phone location data. In particular, this dissertation research achieves three main research objectives. First, this research develops visualization and analysis approaches to uncover hidden urban dynamics patterns from actively tracked mobile phone location data. Second, this research designs quantitative methods to evaluate the representativeness issue of call detail record data. Third, this research develops an appropriate approach to evaluate the performance of different types of tracking data in urban dynamics research. The major contributions of this dissertation research include: 1) uncovering the dynamics of stay/move activities and distance decay effects, and the changing human mobility patterns based on several mobility indicators derived from actively tracked mobile phone location data; 2) taking the first step to evaluate the representativeness and effectiveness of call detail record and revealing its bias in human mobility research; and 3) extracting and comparing urban-level population movement patterns derived from three different types of tracking data as well as their pros and cons in urban population movement analysis

    Alcohol Availability and Violence: A Closer Look at Space and Time

    Get PDF
    Alcohol availability plays an important role in violence. Less is known about how spatiotemporal patterns of alcohol–violence association vary across time of day and across various crime types. This study examined whether and how the associations between on- and off-premise alcohol outlets and assaults, and between on- and off-premise alcohol outlets and robberies, vary across different times of day (morning, daytime, evening, and late night). This cross-sectional study used socioeconomic, alcohol license, and crime data from Milwaukee, Wisconsin, aggregated to US Census block groups and estimated spatially lagged maximum likelihood regression models that controlled for spatial dependence. On-premise outlets were negatively associated with evening assaults and positively associated with daytime and late-night robberies. Off-premise outlets were positively associated with evening assaults, late-night assaults, daytime robberies, and evening robberies. Spatiotemporal alcohol–violence associations vary across crime types and across time of day. On- and off-premise alcohol outlets play a unique role across four different temporal categories and across two violent crime types. These findings have the potential to inform theoretical explanations of the alcohol–violence relationship and may be beneficial when considering and designing custom-tailored local alcohol policy to reduce alcohol-related harm
    • …
    corecore