1,674 research outputs found

    On Interference Cancellation and Iterative Techniques

    Get PDF
    Recent research activities in the area of mobile radio communications have moved to third generation (3G) cellular systems to achieve higher quality with variable transmission rate of multimedia information. In this paper, an overview is presented of various interference cancellation and iterative detection techniques that are believed to be suitable for 3G wireless communications systems. Key concepts are space-time processing and space-division multiple access (or SDMA) techniques. SDMA techniques are possible with software antennas. Furthermore, to reduce receiver implementation complexity, iterative detection techniques are considered. A particularly attractive method uses tentative hard decisions, made on the received positions with the highest reliability, according to some criterion, and can potentially yield an important reduction in the computational requirements of an iterative receiver, with minimum penalty in error performance. A study of the tradeoffs between complexity and performance loss of iterative multiuser detection techniques is a good research topic

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts
    • ā€¦
    corecore