7,713 research outputs found

    Optimal Routing of Energy-aware Vehicles in Networks with Inhomogeneous Charging Nodes

    Full text link
    We study the routing problem for vehicles with limited energy through a network of inhomogeneous charging nodes. This is substantially more complicated than the homogeneous node case studied in [1]. We seek to minimize the total elapsed time for vehicles to reach their destinations considering both traveling and recharging times at nodes when the vehicles do not have adequate energy for the entire journey. We study two versions of the problem. In the single vehicle routing problem, we formulate a mixed-integer nonlinear programming (MINLP) problem and show that it can be reduced to a lower dimensionality problem by exploiting properties of an optimal solution. We also obtain a Linear Programming (LP) formulation allowing us to decompose it into two simpler problems yielding near-optimal solutions. For a multi-vehicle problem, where traffic congestion effects are included, we use a similar approach by grouping vehicles into "subflows". We also provide an alternative flow optimization formulation leading to a computationally simpler problem solution with minimal loss in accuracy. Numerical results are included to illustrate these approaches.Comment: To appear in proceeding of 22nd Mediterranean Conference on Control and Automation, MED'1

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    Electric Vehicles Plug-In Duration Forecasting Using Machine Learning for Battery Optimization

    Get PDF
    The aging of rechargeable batteries, with its associated replacement costs, is one of the main issues limiting the diffusion of electric vehicles (EVs) as the future transportation infrastructure. An effective way to mitigate battery aging is to act on its charge cycles, more controllable than discharge ones, implementing so-called battery-aware charging protocols. Since one of the main factors affecting battery aging is its average state of charge (SOC), these protocols try to minimize the standby time, i.e., the time interval between the end of the actual charge and the moment when the EV is unplugged from the charging station. Doing so while still ensuring that the EV is fully charged when needed (in order to achieve a satisfying user experience) requires a “just-in-time” charging protocol, which completes exactly at the plug-out time. This type of protocol can only be achieved if an estimate of the expected plug-in duration is available. While many previous works have stressed the importance of having this estimate, they have either used straightforward forecasting methods, or assumed that the plug-in duration was directly indicated by the user, which could lead to sub-optimal results. In this paper, we evaluate the effectiveness of a more advanced forecasting based on machine learning (ML). With experiments on a public dataset containing data from domestic EV charge points, we show that a simple tree-based ML model, trained on each charge station based on its users’ behaviour, can reduce the forecasting error by up to 4× compared to the simple predictors used in previous works. This, in turn, leads to an improvement of up to 50% in a combined aging-quality of service metric

    Harmonizing Climate Change Mitigation and Adaptation in Transportation and Land-Use Planning in California Cities

    Get PDF
    Abstract: Recent extreme weather events in California—wildfires, drought, and flooding—make abundantly clear the need to plan effective responses to both the causes and the consequences of climate change. A central challenge for climate planning efforts has been identifying transportation and land-use (TLU) strategies that simultaneously reduce greenhouse gas emissions (“mitigation”) and adapt communities so that they will be less affected by the adverse impacts of climate change (“adaptation”). Sets of policies that collectively address both mitigation and adaptation are known as “integrated actions.” This study explores municipal climate planning in California to determine whether cities incorporate integrated actions into their plans, assess the potential drivers of conflict between mitigation and adaptation in municipal plans, and identify ways the State of California can help cities more effectively incorporate integrated actions. The study methods consisted of a detailed analysis of climate planning documents from 23 California cities with particularly long histories of climate planning, plus interviews with 25 local, regional, and state officials who work on municipal climate planning. The authors found that some cities did adopt packages of integrated actions, and, promisingly, two cities with recently updated climate plans explicitly focused on the need for integrated actions. However, most cities addressed climate mitigation and adaptation in separate efforts, potentially reducing synergies between the two types of action and even creating conflicts. Since the first generation of climate action plans focused primarily on mitigation of greenhouse gases (GHGs), adaptation strategies have not yet been effectively or fully combined into mitigation plans in many cities. Also, a cross-comparison of plan content and interview data suggests that cities often had sets of policies that could potentially create conflicts—mitigation policies that would undermine adaptation capacity, and vice versa. In addition, where a city did adopt integrated actions, these efforts are typically not labeled as such, nor do the policies appear within the same policy document. The study findings suggest promising steps that both municipal and state governments can take to support integrated TLU actions at the local level. For example, cities can proactively link the content in climate mitigation and adaptation plans—a process that will require building the capacity for cross-collaboration between the various departments in charge of developing, implementing, and monitoring climate-related plans. As for the state government, it can provide funding specifically for planning and implementing integrated actions, offer technical support to help municipalities adopt programs and projects that produce integrated mitigation and adaptation benefits, and fund research in the area of integrated actions
    • …
    corecore