190 research outputs found

    IGBT-SiC dual fed open end winding PMSM drive

    Get PDF
    This paper proposes a dual fed common dc link inverter Open End Winding-Permanent Magnet Synchronous Motor (OEW-PMSM) Drive. In order to increase the system efficiency a dual technology converter is used, with one inverter composed of standard IGBT devices and the other composed of fast switching Silicon Carbide (SiC) devices. The common dc link OEW configuration allows the zero-sequence current (ZSC) to flow freely, and the low time constants of the zero-circuit can lead to high zero sequence current flow, with associated losses and stress on the power devices. To avoid this, the zero-sequence voltage produced by the switching combinations adopted to synthetize the control signals needs to be instantaneously eliminated. A novel modulation for dual converter configurations is proposed to eliminate the zero-sequence voltage(ZSV)

    Dual‐Inverter Circuit Topologies for Supplying Open‐Ended Loads

    Get PDF
    Power electronic converters are nowadays the most suitable solution to provide a variable voltage/current in industry. The most commonly used power converter is the three-phase two-level voltage source inverter which transforms a direct-current input voltage into alternating-current output voltage with adjustable magnitude and frequency. Power inverters are used to supply three-phase loads which are typically connected in wye or delta configurations. However, in previous years, a type of connection consisting on leaving both terminal ends of the load opened has been studied as an alternative to standard wye or delta connection. To supply loads with this type of connection, two power inverters (one at each terminal end of the load) are required in a circuit topology called dual-inverter. In this chapter, a general study of the dual-inverter topology is presented. The advantages and issues of such converter are studied and different modulation strategies are shown and discussed. Moreover, multilevel dual-inverter converters are presented as an extension to the basic two-level idea. For evaluation purposes, simulations results are presented

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    A Novel Zero-Sequence Current Elimination PWM Scheme for an Open-Winding PMSM With Common DC Bus

    Get PDF
    This paper introduces a novel pulse width modulation (PWM) scheme for an OW-PMSM driven by dual two-level three-phase inverter with common dc bus which can effectively deal with the inherent zero-sequence current (ZSC) problem. Based on conventional symmetrical unipolar double frequency SPWM scheme with appropriate phase-shift, the common mode voltage (CMV) of two inverters can keep the same and cancel out each other to eliminate the modulated zero sequence voltage (ZSV) disturbance source. In this case, the double frequency effect can be retained to reduce the ac side current ripple and suppress both the corresponding motor vibration and acoustic noise which is advantageous to improve the synthetic performance of motor. The DC bus voltage utilization of the novel PWM scheme is proved to reach the maximum value as same as the conventional modulated ZSV elimination scheme. Meanwhile, a zero-sequence controller is designed to suppress ZSC by further adjusting the two CMVs to counteract other zero-sequence disturbance sources. To verify the analysis, the proposed PWM technique associated with the control method is implemented in an OW-PMSM experimental setup to validate the superiority of proposed method

    A 3D Reduced Common Mode Voltage PWM Algorithm for a Five-Phase Six-Leg Inverter

    Get PDF
    Neutral point voltage control converters (NPVCC) are being considered for AC drive applications, where their additional degree of freedom can be used for different purposes, such as fault tolerance or common mode voltage (CMV) reduction. For every PWM-driven converter, the CMV is an issue that must be considered since it can lead to shaft voltages between rotor and stator windings, generating bearing currents that accelerate bearing degradation, and can also produce a high level of electromagnetic interference (EMI). In light of these considerations, in this paper a three-dimensional reduced common mode voltage PWM (3D RCMV-PWM) technique is proposed which effectively reduces CMV in five-phase six-leg NPVCCs. The mathematical description of both the converter and the modulation technique, in space-vector and carrier-based approaches, is included. Furthermore, the simulation and experimental analysis validate the CMV reduction capability in addition to the good behaviour in terms of the efficiency and harmonic distortion of the proposed RCMV-PWM algorithm.This work has been supported in part by the Government of Basque Country within the fund for research groups of the Basque University system IT1440-22 and MCIN/AEI/10.13039/ 501100011033 within the project PID2020-115126RB-I00

    Zero-Sequence Voltage Elimination for Dual-Fed Common DC-Link Open-End Winding PMSM High-Speed Starter-Generator - Part I: Modulation

    Get PDF
    © 1972-2012 IEEE. In this paper, a dual-fed (DF) common dc-link topology open-end winding permanent magnet synchronous motor for aircraft high-speed starter-generator application is considered. While on one hand the common dc bus configuration significantly simplifies and reduces the costs of the topology, on the other hand it allows the zero-sequence current (ZSC) to flow freely in the system. High-speed machines are characterized by low phase inductance, which implies low zero-sequence impedance. A small time constant of the zero-sequence circuit produces a high-frequency, high-intensity ZSC ripple with the risk of harming the switching devices. This paper presents a novel hybrid space vector pulsewidth modulation that allows to instantaneously eliminate the zero-sequence voltage (ZSV) produced by the two voltage source converters (VSCs) by square wave modulating one of the two VSCs. The non-sinusoidal machine back electromotive force (EMF) has been considered and the effect of the converters' dead time on the ZSV has been analyzed. The square-wave-modulated VSC uses insulated-gate bipolar transistor (IGBT) devices, whereas the other uses Silicon Carbide (SiC) technology. The proposed topology is tested through both simulations and experiments

    Integrated on-board EV battery chargers: New perspectives and challenges for safety improvement

    Get PDF
    Thanks to the heavy reduction of cost and volume, integrated On-Board Chargers (OBCs) represent an effective solution to provide a versatile and powerful charging system on board of electric and plug-in electric vehicles, combining the charging function with the traction drivetrain. Such integration foresees the use of the traction motor windings as reactive elements and the traction inverter as AC/DC converter. However, this integration brings several challenges on the table. At first, shaft torque production must be avoided to reduce the losses and mechanical stress. A second challenge is to improve the filtering capability of the motor windings in order to meet the grid standards in terms of current distortion and power factor correction. At last, the most critical issue is to meet the safety standards in terms of leakage current, since it represents a risk to human operators and could also hamper the smooth operation of the charger. Therefore, this paper aims at giving a comprehensive review of the challenges in designing integrated chargers. After reviewing the architectures available in literature, an exemplifying structure of integrated OBC will be analysed in terms of leakage current generation and compliance with the relevant standards, along with an introduction to those solutions which use the machine as isolation transformer. Conclusions are given on the prospect for making integrated on-board chargers safer and more reliable

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Analysis of the Harmonic Performance of Power Converters and Electrical Drives

    Get PDF
    Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems)
    • 

    corecore