55 research outputs found

    Retrospective Interference Alignment

    Full text link
    We explore similarities and differences in recent works on blind interference alignment under different models such as staggered block fading model and the delayed CSIT model. In particular we explore the possibility of achieving interference alignment with delayed CSIT when the transmitters are distributed. Our main contribution is an interference alignment scheme, called retrospective interference alignment in this work, that is specialized to settings with distributed transmitters. With this scheme we show that the 2 user X channel with only delayed channel state information at the transmitters can achieve 8/7 DoF, while the interference channel with 3 users is able to achieve 9/8 DoF. We also consider another setting where delayed channel output feedback is available to transmitters. In this setting the X channel and the 3 user interference channel are shown to achieve 4/3 and 6/5 DoF, respectively

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Achievable DoF-delay trade-offs for the K-user MIMO interference channel with delayed CSIT

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The degrees of freedom (DoFs) of the K-user multiple-input multiple-output (MIMO) interference channel are studied when perfect, but delayed channel state information is available at the transmitter side (delayed CSIT). Recent works have proposed schemes improving the DoF knowledge of the interference channel, but at the cost of developing transmission involving many channel uses (long delay), thus increasing the complexity at both transmitter and receiver side. This paper proposes three linear precoding strategies, limited to at most three phases, based on the concept of interference alignment, and built upon three main ingredients: delayed CSIT precoding, user scheduling, and redundancy transmission. In this respect, the interference alignment is realized by exploiting delayed CSIT to align the interference at the non-intended receivers along the space-time domain. Moreover, a new framework is proposed where the number of transmitted symbols and duration of the phases is obtained as the solution of a maximization problem, and enabling the introduction of complexity constraints, which allows deriving the achievable DoF as a function of the transmission delay, i.e., the achievable DoF-delay trade-off. Finally, the latter part of this paper settles that the assumption of time-varying channels common along all the literature on delayed CSIT is indeed unnecessary.Peer ReviewedPostprint (author's final draft
    • …
    corecore