917 research outputs found

    NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems

    Get PDF
    Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations

    Autonomous rendezvous and docking operations of unmanned expendable cargo transfer vehicles (e.g. Centaur) with Space Station Freedom

    Get PDF
    This paper describes the results of the feasibility study using Centaur or other CTV's to deliver payloads to the Space Station Freedom (SSF). During this study was examined the requirements upon unmanned cargo transfer stages (including Centaur) for phasing, rendezvous, proximity operations and docking/berthing (capture)

    Piloting decision aid for spacecraft proximity operations

    Get PDF
    The concept of a decision aid to assist the piloting of a powered vehicle during a near-field (less than 2000 feet) rendezvous to another spacecraft is discussed. Using Space Shuttle rendezvous with an orbiting satellite as an example, extensive practice is normally required to successfully effect such a rendezvous with a minimum of propellant. As a rule, variations on a 'point and shoot' technique are optimized and used as much as possible. A piloting decision aid (PDA) to assist in the pointing process was conceived and is in the preliminary stages of development. This concept may be applied to Space Shuttle proximity operations for berthing with Space Station Freedom (SSF), for Shuttle rendezvous with other spacecraft, or for autonomous rendezvous of any unmanned vehicle with SSF. The concept orginated with a task order from NASA JSC for an automated piloting procedure and was influenced by an early air-to-air missile envelope display

    Thrust Expenditure Feasibility Analysis for Rendezvous Operations in Cis-Lunar Space

    Get PDF
    In recent years, Moon exploration has become a primary objective within most space agencies worldwide. The Lunar Space Gateway program ARTEMIS (or LOP-G) is an example of mission proposal for technology feasibility in terms of autonomous (and later manned) operations of a space station orbiting the L2 Earth – Moon Lagrangian point. Rendezvous and docking (berthing) are tasks that are envisioned to be performed fully autonomously. The focus of the paper falls in this category, whereby an active module called Lunar Ascender Element (LAE), returning from the lunar surface, shall be able to operate an automatic rendezvous mission with the LOP-G station. The paper concentrates, in particular, with the feasibility analysis needed to assess the engines’ thrust capabilities to provide appropriate propulsion for open loop and closed loop control during rendezvous. The capability of providing the desired amount of thrust is not only linked to the actual guidance commands, but also to the nature of the motors. The rendezvous maneuver sequence, dynamics and hold points are first defined, and the thrust distribution and configuration detailed for the specific mission. The guidance logics are described, and the implementation of a passively safe trajectory outlined. Based on the dynamic model of the system, and the assumed actuator model, the main causes of unfeasibility are listed. The paper continues by analyzing the sensitivity of the thrust profile at each motor with respect to the control allocation algorithm, the duration of the maneuver, the duration of each impulse (assuming a two-impulse maneuver), and the location of the berthing port within a selected near rectilinear halo orbit around the Moon. The tests take into account how the parameters influence the Delta V required to perform the mission. The authors wish to remark that this analysis is critical to the design of rendezvous and berthing (docking) operations, since feasibility is necessary for the success of the mission, and it provides a structured computation of a realistic parameter space in the relative motion in the presence of a third body perturbation

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    Get PDF
    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model

    Space Shuttle orbiter modifications to support Space Station Freedom

    Get PDF
    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations

    Modular space station phase B extension preliminary system design. Volume 2: Operations and crew analyses

    Get PDF
    All analyses and tradeoffs conducted to establish the MSS operations and crew activities are discussed. The missions and subsystem integrated analyses that were completed to assure compatibility of program elements and consistency with program objectives are presented

    Payload accommodations. Satellite servicing support

    Get PDF
    The proposed technology studies discussed at the Space Transportation Avionics Symposium in Williamsburg, VA on 7 to 9 November 1989, are discussed. The discussions and findings of the Payload Accommodations Subpanel are also summarized. The major objective of the proposed focused technology development is to develop and demonstrate (ground and flight) autonomous rendezvous, proximity operations, and docking/berthing capabilities to support satellite servicing. It is expected that autonomous rendezvous and docking (AR and D) capabilities will benefit both the users (e.g., satellite developers and operators) and the transportation system developers and operators. AR and D will provide increased availability of rendezvous and docking services by reducing the operational constraints associated with current capabilities. These constraints include specific lighting conditions, continuous space-to-ground communications, and lengthy ground tracking periods. AR and D will provide increased cost efficiency with the potential for reduced propellant expenditures and workloads (flight and/or ground crews). The AR and D operations will be more consistent, allowing more flexibility in the design of the satellite control system and docking/berthing mechanisms

    Tethered orbital refueling study

    Get PDF
    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance
    • …
    corecore