1,061 research outputs found

    A virtual MIMO dual-hop architecture based on hybrid spatial modulation

    Get PDF
    International audienceIn this paper, we propose a novel Virtual Multiple-Input-Multiple-Output (VMIMO) architecture based on the concept of Spatial Modulation (SM). Using a dual-hop and Decode-and-Forward protocol, we form a distributed system, called Dual-Hop Hybrid SM (DH-HSM). DH-HSM conveys information from a Source Node (SN) to a Destination Node (DN) via multiple Relay Nodes (RNs). The spatial position of the RNs is exploited for transferring information in addition to, or even without, a conventional symbol. In order to increase the performance of our architecture, while keeping the complexity of the RNs and DN low, we employ linear precoding using Channel State Information (CSI) at the SN. In this way, we form a Receive-Spatial Modulation (R-SM) pattern from the SN to the RNs, which is able to employ a centralized coordinated or a distributed uncoordinated detection algorithm at the RNs. In addition, we focus on the SN and propose two regularized linear precoding methods that employ realistic Imperfect Channel State Information at the Transmitter. The power of each precoder is analyzed theoretically. Using the Bit Error Rate (BER) metric, we evaluate our architecture against the following benchmark systems: 1) single relay; 2) best relay selection; 3) distributed Space Time Block Coding (STBC) VMIMO scheme; and 4) the direct communication link. We show that DH-HSM is able to achieve significant Signal-to-Noise Ratio (SNR) gains, which can be as high as 10.5 dB for a very large scale system setup. In order to verify our simulation results, we provide an analytical framework for the evaluation of the Average Bit Error Probability (ABEP)

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced

    Exploiting mm-wave communications to boost the performance of industrial wireless networks

    Get PDF
    This work explores the potentiality of millimeter waves (mmW) as physical layer in industrial wireless networks. Innovative models and a link design method are proposed to achieve reliable communication, at a distance of tens of meters for a single hop, even in harsh environments. By exploiting the worldwide-free band of several GHz, available around 60 GHz, mmW links allow to achieve a performance boosting of up to two orders of magnitude, w.r.t. conventional sub-6-GHz wireless links, in indoor industrial environments. Time slotted channel hopping and frequency-diversity can be implemented with a large number of channels, and with high bit rate (several Mb/s per channel). This allows for robust networking of high data-rate sensors, such as cameras, radars, or laser scanners. Featuring a low bit error rate, mmW communication allows for low-latency link and large number of hops in networks with a large radius. Finally, it ensures interference separation from operating frequencies of electrical machines, switching converters, and other industrial wireless networks (e.g., 802.11 or 802.15). Implementation results for key HWblocks in low-cost technologies show the feasibility of mmW communication nodes with low-power and compact size

    On Performance Characterization of Cascaded Multiwire-PLC/MIMO-RF Communication System

    Get PDF
    The flexibility of radio frequency (RF) systems and the omnipresence of power cables potentially make the cascaded power line communication (PLC)/RF system an efficient and cost-effective solution in terms of wide coverage and high-speed transmission. This letter proposes an opportunistic decode-and-forward (DF)-based multi-wire/RF relaying system to exploit the advantages of both techniques. The outage probability, bit error rate, and system channel capacity are correspondingly chosen to analyze the properties of the proposed system, which are derived in closed-form expressions and validated via Monte-Carlo simulations. One can observe that our proposed system outperforms the wireless-only system in terms of coverage and data rate, especially when there exists a non-line-of-sight (NLoS) connection between the transmitter and receiver pair.Comment: 5 pages, 4 figure
    • …
    corecore