744 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Graph Neural Network Flavour Tagging and Boosted Higgs Measurements at the LHC

    Get PDF
    This thesis presents investigations into the challenges of, and potential improvements to, b-jet identification (b-tagging) at the ATLAS experiment at the Large Hadron Collider (LHC). The presence of b-jets is a key signature of many interesting physics processes such as the production of Higgs bosons, which preferentially decay to a pair of b-quarks. In this thesis, a particular focus is placed on the high transverse momentum regime, which is a critical region in which to study the Higgs boson and the wider Standard Model, but also a region within which b-tagging becomes increasingly difficult. As b-tagging relies on the accurate reconstruction of charged particle trajectories (tracks), the tracking performance is investigated and potential improvements are assessed. Track reconstruction becomes increasingly difficult at high transverse momentum due to the in- creased multiplicity and collimation of tracks, and also due to the presence of displaced tracks from the decay of a long-flying b-hadron. The investigations reveal that the quality selections applied during track reconstruction are suboptimal for b-hadron decay tracks inside high transverse momentum b-jets, motivating future studies into the optimisation of these selections. Two novel approaches are developed to improve b-tagging performance. Firstly, an algorithm which is able to classify the origin of tracks is used to select a more optimal set of tracks for input to the b-tagging algorithms. Secondly, a graph neural network (GNN) jet flavour tagging algorithm has been developed. This algorithm directly accepts jets and tracks as inputs, making a break from previous algorithms which relied on the outputs of intermediate taggers. The model is trained to simultaneously predict the jet flavour, track origins, and the spatial track-pair compatibility, and demonstrates marked improvements in b-tagging performance both at low and high transverse momenta. The closely related task of c-jet identification also benefits from this approach. Analysis of high transverse momentum H ā†’ bb decays, where the Higgs boson is produced in association with a vector boson, was performed using 139 fbāˆ’1 of 13 TeV proton-proton collision data from Run 2 of the LHC. This analysis provided first measurements of the V H, H ā†’ bb process in two high transverse momentum regions, and is described with a particular focus on the background modelling studies performed by the author

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    Disease progression and genetic risk factors in the primary tauopathies

    Get PDF
    The primary tauopathies are a group of progressive neurodegenerative diseases within the frontotemporal lobar degeneration spectrum (FTLD) characterised by the accumulation of misfolded, hyperphosphorylated microtubule-associated tau protein (MAPT) within neurons and glial cells. They can be classified according to the underlying ratio of three-repeat (3R) to four-repeat (4R) tau and include Pickā€™s disease (PiD), which is the only 3R tauopathy, and the 4R tauopathies the most common of which are progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). There are no disease modifying therapies currently available, with research complicated by the wide variability in clinical presentations for each underlying pathology, with presentations often overlapping, as well as the frequent occurrence of atypical presentations that may mimic other non-FTLD pathologies. Although progress has been made in understanding the genetic contribution to disease risk in the more common 4R tauopathies (PSP and CBD), very little is known about the genetics of the 3R tauopathy PiD. There are two broad aims to this thesis; firstly, to use data-driven generative models of disease progression to try and more accurately stage and subtype patients presenting with PSP and corticobasal syndrome (CBS, the most common presentation of CBD), and secondly to identify genetic drivers of disease risk and progression in PiD. Given the rarity of these disorders, as part of this PhD I had to assemble two large cohorts through international collaboration, the 4R tau imaging cohort and the Pickā€™s disease International Consortium (PIC), to build large enough sample sizes to enable the required analyses. In Chapter 3 I use a probabilistic event-based modelling (EBM) approach applied to structural MRI data to determine the sequence of brain atrophy changes in clinically diagnosed PSP - Richardson syndrome (PSP-RS). The sequence of atrophy predicted by the model broadly mirrors the sequential spread of tau pathology in PSP post-mortem staging studies, and has potential utility to stratify PSP patients on entry into clinical trials based on disease stage, as well as track disease progression. To better characterise the spatiotemporal heterogeneity of the 4R tauopathies, I go on to use Subtype and Stage Inference (SuStaIn), an unsupervised machine algorithm, to identify population subgroups with distinct patterns of atrophy in PSP (Chapter 4) and CBS (Chapter 5). The SuStaIn model provides data-driven evidence for the existence of two spatiotemporal subtypes of atrophy in clinically diagnosed PSP, giving insights into the relationship between pathology and clinical syndrome. In CBS I identify two distinct imaging subtypes that are differentially associated with underlying pathology, and potentially a third subtype that if confirmed in a larger dataset may allow the differentiation of CBD from both PSP and AD pathology using a baseline MRI scan. In Chapter 6 I investigate the association between the MAPT H1/H2 haplotype and PiD, showing for the first time that the H2 haplotype, known to be strongly protective against developing PSP or CBD, is associated with an increased risk of PiD. This is an important finding and has implications for the future development of MAPT isoform-specific therapeutic strategies for the primary tauopathies. In Chapter 7 I perform the first genome wide association study (GWAS) in PiD, identifying five genomic loci that are nominally associated with risk of disease. The top two loci implicate perturbed GABAergic signalling (KCTD8) and dysregulation of the ubiquitin proteosome system (TRIM22) in the pathogenesis of PiD. In the final chapter (Chapter 8) I investigate the genetic determinants of survival in PiD, by carrying out a Cox proportional hazards genome wide survival study (GWSS). I identify a genome-wide significant association with survival on chromosome 3, within the NLGN1 gene. which encodes a synaptic scaffolding protein located at the neuronal pre-synaptic membrane. Loss of synaptic integrity with resulting dysregulation of synaptic transmission leading to increased pathological tau accumulation is a plausible mechanism though which NLGN1 dysfunction could impact on survival in PiD

    The Self The Soul and The World: Affect Reason and Complexity

    Get PDF
    This book looks at the affective-cognitive roots of how the human mind inquires into the workings of nature and, more generally, how the mind confronts reality. Reality is an infinitely complex system, in virtue of which the mind can comprehend it only in bits and pieces, by making up interpretations of the myriads of signals received from the world by way of integrating those with information stored from the past. This constitutes a piecemeal interpretation by which we assemble our phenomenal reality. In perceiving the complex world and responding to it, the mind invokes the logic of affect and the logic of reason, the former mostly innate and implicit, and the latter generated consciously in explicit terms with reference to mind-independent relations between entities in nature. It is a strange combination of affect and reason that enables us to make decisions and inferences, --- the latter mostly of the inductive type --- thereby making possible the development of theories. Theories are our tool-kits for explaining and predicting phenomena, guiding us along in our journey in life. Theories, however, are defeasible, and need to be constantly updated, at times even radically. In this, the self and the soul are of enormous relevance. The former is the affect-based psychological engine driving all our mental processes, while the latter is the capacity of the conscious mind to examine and reconstruct the self by modulating repressed conflicts. If the soul remains inoperative, all our theories become misdirected and a rot spreads inexorably all around us

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    2014 GREAT Day Program

    Get PDF
    SUNY Geneseoā€™s Eighth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1008/thumbnail.jp

    Diversification and fairness in top-k ranking algorithms

    Get PDF
    Given a user query, the typical user interfaces, such as search engines and recommender systems, only allow a small number of results to be returned to the user. Hence, figuring out what would be the top-k results is an important task in information retrieval, as it helps to ensure that the most relevant results are presented to the user. There exists an extensive body of research that studies how to score the records and return top-k to the user. Moreover, there exists an extensive set of criteria that researchers identify to present the user with top-k results, and result diversification is one of them. Diversifying the top-k result ensures that the returned result set is relevant as well as representative of the entire set of answers to the user query, and it is highly relevant in the context of search, recommendation, and data exploration. The goal of this dissertation is two-fold: the first goal is to focus on adapting existing popular diversification algorithms and studying how to expedite them without losing the accuracy of the answers. This work studies the scalability challenges of expediting the running time of existing diversification algorithms by designing a generic framework that produces the same results as the original algorithms, yet it is significantly faster in running time. This proposed approach handles scenarios where data change over a period of time and studies how to adapt the framework to accommodate data changes. The second aspect of the work studies how the existing top-k algorithms could lead to inequitable exposure of records that are equivalent qualitatively. This scenario is highly important for long-tail data where there exists a long tail of records that have similar utility, but the existing top-k algorithm only shows one of the top-ks, and the rest are never returned to the user. Both of these problems are studied analytically, and their hardness is studied. The contributions of this dissertation lie in (a) formalizing principal problems and studying them analytically. (b) designing scalable algorithms with theoretical guarantees, and (c) evaluating the efficacy and scalability of the designed solutions by comparing them with the state-of-the-art solutions over large-scale datasets
    • ā€¦
    corecore