284 research outputs found

    NextBestOnce: Achieving Polylog Routing despite Non-greedy Embeddings

    Full text link
    Social Overlays suffer from high message delivery delays due to insufficient routing strategies. Limiting connections to device pairs that are owned by individuals with a mutual trust relationship in real life, they form topologies restricted to a subgraph of the social network of their users. While centralized, highly successful social networking services entail a complete privacy loss of their users, Social Overlays at higher performance represent an ideal private and censorship-resistant communication substrate for the same purpose. Routing in such restricted topologies is facilitated by embedding the social graph into a metric space. Decentralized routing algorithms have up to date mainly been analyzed under the assumption of a perfect lattice structure. However, currently deployed embedding algorithms for privacy-preserving Social Overlays cannot achieve a sufficiently accurate embedding and hence conventional routing algorithms fail. Developing Social Overlays with acceptable performance hence requires better models and enhanced algorithms, which guarantee convergence in the presence of local optima with regard to the distance to the target. We suggest a model for Social Overlays that includes inaccurate embeddings and arbitrary degree distributions. We further propose NextBestOnce, a routing algorithm that can achieve polylog routing length despite local optima. We provide analytical bounds on the performance of NextBestOnce assuming a scale-free degree distribution, and furthermore show that its performance can be improved by more than a constant factor when including Neighbor-of-Neighbor information in the routing decisions.Comment: 23 pages, 2 figure

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch k3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3logn)f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlogn)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(logn)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    Remarks on Category-Based Routing in Social Networks

    Full text link
    It is well known that individuals can route messages on short paths through social networks, given only simple information about the target and using only local knowledge about the topology. Sociologists conjecture that people find routes greedily by passing the message to an acquaintance that has more in common with the target than themselves, e.g. if a dentist in Saarbr\"ucken wants to send a message to a specific lawyer in Munich, he may forward it to someone who is a lawyer and/or lives in Munich. Modelling this setting, Eppstein et al. introduced the notion of category-based routing. The goal is to assign a set of categories to each node of a graph such that greedy routing is possible. By proving bounds on the number of categories a node has to be in we can argue about the plausibility of the underlying sociological model. In this paper we substantially improve the upper bounds introduced by Eppstein et al. and prove new lower bounds.Comment: 21 page

    Analyzing and Enhancing Routing Protocols for Friend-to-Friend Overlays

    Get PDF
    The threat of surveillance by governmental and industrial parties is more eminent than ever. As communication moves into the digital domain, the advances in automatic assessment and interpretation of enormous amounts of data enable tracking of millions of people, recording and monitoring their private life with an unprecedented accurateness. The knowledge of such an all-encompassing loss of privacy affects the behavior of individuals, inducing various degrees of (self-)censorship and anxiety. Furthermore, the monopoly of a few large-scale organizations on digital communication enables global censorship and manipulation of public opinion. Thus, the current situation undermines the freedom of speech to a detrimental degree and threatens the foundations of modern society. Anonymous and censorship-resistant communication systems are hence of utmost importance to circumvent constant surveillance. However, existing systems are highly vulnerable to infiltration and sabotage. In particular, Sybil attacks, i.e., powerful parties inserting a large number of fake identities into the system, enable malicious parties to observe and possibly manipulate a large fraction of the communication within the system. Friend-to-friend (F2F) overlays, which restrict direct communication to parties sharing a real-world trust relationship, are a promising countermeasure to Sybil attacks, since the requirement of establishing real-world trust increases the cost of infiltration drastically. Yet, existing F2F overlays suffer from a low performance, are vulnerable to denial-of-service attacks, or fail to provide anonymity. Our first contribution in this thesis is concerned with an in-depth analysis of the concepts underlying the design of state-of-the-art F2F overlays. In the course of this analysis, we first extend the existing evaluation methods considerably, hence providing tools for both our and future research in the area of F2F overlays and distributed systems in general. Based on the novel methodology, we prove that existing approaches are inherently unable to offer acceptable delays without either requiring exhaustive maintenance costs or enabling denial-of-service attacks and de-anonymization. Consequentially, our second contribution lies in the design and evaluation of a novel concept for F2F overlays based on insights of the prior in-depth analysis. Our previous analysis has revealed that greedy embeddings allow highly efficient communication in arbitrary connectivity-restricted overlays by addressing participants through coordinates and adapting these coordinates to the overlay structure. However, greedy embeddings in their original form reveal the identity of the communicating parties and fail to provide the necessary resilience in the presence of dynamic and possibly malicious users. Therefore, we present a privacy-preserving communication protocol for greedy embeddings based on anonymous return addresses rather than identifying node coordinates. Furthermore, we enhance the communication’s robustness and attack-resistance by using multiple parallel embeddings and alternative algorithms for message delivery. We show that our approach achieves a low communication complexity. By replacing the coordinates with anonymous addresses, we furthermore provably achieve anonymity in the form of plausible deniability against an internal local adversary. Complementary, our simulation study on real-world data indicates that our approach is highly efficient and effectively mitigates the impact of failures as well as powerful denial-of-service attacks. Our fundamental results open new possibilities for anonymous and censorship-resistant applications.Die Bedrohung der Überwachung durch staatliche oder kommerzielle Stellen ist ein drängendes Problem der modernen Gesellschaft. Heutzutage findet Kommunikation vermehrt über digitale Kanäle statt. Die so verfügbaren Daten über das Kommunikationsverhalten eines Großteils der Bevölkerung in Kombination mit den Möglichkeiten im Bereich der automatisierten Verarbeitung solcher Daten erlauben das großflächige Tracking von Millionen an Personen, deren Privatleben mit noch nie da gewesener Genauigkeit aufgezeichnet und beobachtet werden kann. Das Wissen über diese allumfassende Überwachung verändert das individuelle Verhalten und führt so zu (Selbst-)zensur sowie Ängsten. Des weiteren ermöglicht die Monopolstellung einiger weniger Internetkonzernen globale Zensur und Manipulation der öffentlichen Meinung. Deshalb stellt die momentane Situation eine drastische Einschränkung der Meinungsfreiheit dar und bedroht die Grundfesten der modernen Gesellschaft. Systeme zur anonymen und zensurresistenten Kommunikation sind daher von ungemeiner Wichtigkeit. Jedoch sind die momentanen System anfällig gegen Sabotage. Insbesondere ermöglichen es Sybil-Angriffe, bei denen ein Angreifer eine große Anzahl an gefälschten Teilnehmern in ein System einschleust und so einen großen Teil der Kommunikation kontrolliert, Kommunikation innerhalb eines solchen Systems zu beobachten und zu manipulieren. F2F Overlays dagegen erlauben nur direkte Kommunikation zwischen Teilnehmern, die eine Vertrauensbeziehung in der realen Welt teilen. Dadurch erschweren F2F Overlays das Eindringen von Angreifern in das System entscheidend und verringern so den Einfluss von Sybil-Angriffen. Allerdings leiden die existierenden F2F Overlays an geringer Leistungsfähigkeit, Anfälligkeit gegen Denial-of-Service Angriffe oder fehlender Anonymität. Der erste Beitrag dieser Arbeit liegt daher in der fokussierten Analyse der Konzepte, die in den momentanen F2F Overlays zum Einsatz kommen. Im Zuge dieser Arbeit erweitern wir zunächst die existierenden Evaluationsmethoden entscheidend und erarbeiten so Methoden, die Grundlagen für unsere sowie zukünftige Forschung in diesem Bereich bilden. Basierend auf diesen neuen Evaluationsmethoden zeigen wir, dass die existierenden Ansätze grundlegend nicht fähig sind, akzeptable Antwortzeiten bereitzustellen ohne im Zuge dessen enorme Instandhaltungskosten oder Anfälligkeiten gegen Angriffe in Kauf zu nehmen. Folglich besteht unser zweiter Beitrag in der Entwicklung und Evaluierung eines neuen Konzeptes für F2F Overlays, basierenden auf den Erkenntnissen der vorangehenden Analyse. Insbesondere ergab sich in der vorangehenden Evaluation, dass Greedy Embeddings hoch-effiziente Kommunikation erlauben indem sie Teilnehmer durch Koordinaten adressieren und diese an die Struktur des Overlays anpassen. Jedoch sind Greedy Embeddings in ihrer ursprünglichen Form nicht auf anonyme Kommunikation mit einer dynamischen Teilnehmermengen und potentiellen Angreifern ausgelegt. Daher präsentieren wir ein Privätssphäre-schützenden Kommunikationsprotokoll für F2F Overlays, in dem die identifizierenden Koordinaten durch anonyme Adressen ersetzt werden. Des weiteren erhöhen wir die Resistenz der Kommunikation durch den Einsatz mehrerer Embeddings und alternativer Algorithmen zum Finden von Routen. Wir beweisen, dass unser Ansatz eine geringe Kommunikationskomplexität im Bezug auf die eigentliche Kommunikation sowie die Instandhaltung des Embeddings aufweist. Ferner zeigt unsere Simulationstudie, dass der Ansatz effiziente Kommunikation mit kurzen Antwortszeiten und geringer Instandhaltungskosten erreicht sowie den Einfluss von Ausfälle und Angriffe erfolgreich abschwächt. Unsere grundlegenden Ergebnisse eröffnen neue Möglichkeiten in der Entwicklung anonymer und zensurresistenter Anwendungen

    Dynamics of spectral algorithms for distributed routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-117).In the past few decades distributed systems have evolved from man-made machines to organically changing social, economic and protein networks. This transition has been overwhelming in many ways at once. Dynamic, heterogeneous, irregular topologies have taken the place of static, homogeneous, regular ones. Asynchronous, ad hoc peer-to-peer networks have replaced carefully engineered super-computers, governed by globally synchronized clocks. Modern network scales have demanded distributed data structures in place of traditionally centralized ones. While the core problems of routing remain mostly unchanged, the sweeping changes of the computing environment invoke an altogether new science of algorithmic and analytic techniques. It is these techniques that are the focus of the present work. We address the re-design of routing algorithms in three classical domains: multi-commodity routing, broadcast routing and all-pairs route representation. Beyond their practical value, our results make pleasing contributions to Mathematics and Theoretical Computer Science. We exploit surprising connections to NP-hard approximation, and we introduce new techniques in metric embeddings and spectral graph theory. The distributed computability of "oblivious routes", a core combinatorial property of every graph and a key ingredient in route engineering, opens interesting questions in the natural and experimental sciences as well. Oblivious routes are "universal" communication pathways in networks which are essentially unique. They are magically robust as their quality degrades smoothly and gracefully with changes in topology or blemishes in the computational processes. While we have only recently learned how to find them algorithmically, their power begs the question whether naturally occurring networks from Biology to Sociology to Economics have their own mechanisms of finding and utilizing these pathways. Our discoveries constitute a significant progress towards the design of a self-organizing Internet, whose infrastructure is fueled entirely by its participants on an equal citizen basis. This grand engineering challenge is believed to be a potential technological solution to a long line of pressing social and human rights issues in the digital age. Some prominent examples include non-censorship, fair bandwidth allocation, privacy and ownership of social data, the right to copy information, non-discrimination based on identity, and many others.by Petar Maymounkov.Ph.D

    Hyperbolic Geometry of Complex Networks

    Full text link
    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure

    Near Isometric Terminal Embeddings for Doubling Metrics

    Get PDF
    Given a metric space (X,d), a set of terminals K subseteq X, and a parameter t >= 1, we consider metric structures (e.g., spanners, distance oracles, embedding into normed spaces) that preserve distances for all pairs in K x X up to a factor of t, and have small size (e.g. number of edges for spanners, dimension for embeddings). While such terminal (aka source-wise) metric structures are known to exist in several settings, no terminal spanner or embedding with distortion close to 1, i.e., t=1+epsilon for some small 0<epsilon<1, is currently known. Here we devise such terminal metric structures for doubling metrics, and show that essentially any metric structure with distortion 1+epsilon and size s(|X|) has its terminal counterpart, with distortion 1+O(epsilon) and size s(|K|)+1. In particular, for any doubling metric on n points, a set of k=o(n) terminals, and constant 0<epsilon<1, there exists - A spanner with stretch 1+epsilon for pairs in K x X, with n+o(n) edges. - A labeling scheme with stretch 1+epsilon for pairs in K x X, with label size ~~ log k. - An embedding into l_infty^d with distortion 1+epsilon for pairs in K x X, where d=O(log k). Moreover, surprisingly, the last two results apply if only K is a doubling metric, while X can be arbitrary
    corecore