1,106,213 research outputs found
Social positioning: Designing the Seams between Social, Physical and Digital Space
Mobile settings are not only physically and digitally mediated; they are also inhabited by people - a social space. We argue that careful design exposing the connections, gaps, overlays and mismatches within and between physical, digital and social space allow for a better understanding and thereby mastering of the resulting combined space. Two concepts are explored in MobiTip, a social mobile service for exchanging opinions among peers: intramedia seams concerning network coverage and position technology, and intermedia seams between digitally transmitted tips and the physical, social context surrounding the user. We introduce social positioning as an alternative and complement to the current strive for seamless connectedness and exact positioning in physical space
Optimal Opinion Control: The Campaign Problem
Opinion dynamics is nowadays a very common field of research. In this article
we formulate and then study a novel, namely strategic perspective on such
dynamics: There are the usual normal agents that update their opinions, for
instance according the well-known bounded confidence mechanism. But,
additionally, there is at least one strategic agent. That agent uses opinions
as freely selectable strategies to get control on the dynamics: The strategic
agent of our benchmark problem tries, during a campaign of a certain length, to
influence the ongoing dynamics among normal agents with strategically placed
opinions (one per period) in such a way, that, by the end of the campaign, as
much as possible normals end up with opinions in a certain interval of the
opinion space. Structurally, such a problem is an optimal control problem. That
type of problem is ubiquitous. Resorting to advanced and partly non-standard
methods for computing optimal controls, we solve some instances of the campaign
problem. But even for a very small number of normal agents, just one strategic
agent, and a ten-period campaign length, the problem turns out to be extremely
difficult. Explicitly we discuss moral and political concerns that immediately
arise, if someone starts to analyze the possibilities of an optimal opinion
control.Comment: 47 pages, 12 figures, and 11 table
The dynamics of public opinion under majority rules
This note explains the process of public opinion formation via a locally interactive, space-time analysis. The model we use is a special case of the general framework for modelling social interaction proposed in Blume and Durlauf (2001). In the reduced form of the model we study how each individual, when faced with the choice of one, out of two, opinions, tends to conform to the opinion held by the majority of her neighbours. We consider different, symmetric and asymmetric, majority rules. Depending on the specific behavioral rule, the aggregate process of opinion formation may display contagion on one specific opinion, or consensus among all individuals in the population, or co-existence of both opinions. Whenever consensus obtains, we observe the formation of homogeneous areas (clusters) that seem almost stationary along the dynamics
Issues in NASA program and project management
This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented
Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions
In this work we study the coupled dynamics of social balance and opinion
formation. We propose a model where agents form opinions under bounded
confidence, but only considering the opinions of their friends. The signs of
social ties -friendships and enmities- evolve seeking for social balance,
taking into account how similar agents' opinions are. We consider both the case
where opinions have one and two dimensions. We find that our dynamics produces
the segregation of agents into two cliques, with the opinions of agents in one
clique differing from those in the other. Depending on the level of bounded
confidence, the dynamics can produce either consensus of opinions within each
clique or the coexistence of several opinion clusters in a clique. For the
uni-dimensional case, the opinions in one clique are all below the opinions in
the other clique, hence defining a "left clique" and a "right clique". In the
two-dimensional case, our numerical results suggest that the two cliques are
separated by a hyperplane in the opinion space. We also show that the
phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and
Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the
context of politics, we comment about the possible relation of our results to
the fragmentation of an ideology and the emergence of new political parties.Comment: 8 figures, PLoS ONE 11(10): e0164323, 201
Compliments, Insults, and the Paradox of Pillow Talk
I haven’t been a skinny girl since I was seven years old.
At nine, I was told I wasn’t small enough to sit down and talk to the other girls. I didn’t “fit” and they wouldn’t make enough space for my body, or for my big opinions. [excerpt
Exact dimension estimation of interacting qubit systems assisted by a single quantum probe
Estimating the dimension of an Hilbert space is an important component of
quantum system identification. In quantum technologies, the dimension of a
quantum system (or its corresponding accessible Hilbert space) is an important
resource, as larger dimensions determine e.g. the performance of quantum
computation protocols or the sensitivity of quantum sensors. Despite being a
critical task in quantum system identification, estimating the Hilbert space
dimension is experimentally challenging. While there have been proposals for
various dimension witnesses capable of putting a lower bound on the dimension
from measuring collective observables that encode correlations, in many
practical scenarios, especially for multiqubit systems, the experimental
control might not be able to engineer the required initialization, dynamics and
observables.
Here we propose a more practical strategy, that relies not on directly
measuring an unknown multiqubit target system, but on the indirect interaction
with a local quantum probe under the experimenter's control. Assuming only that
the interaction model is given and the evolution correlates all the qubits with
the probe, we combine a graph-theoretical approach and realization theory to
demonstrate that the dimension of the Hilbert space can be exactly estimated
from the model order of the system. We further analyze the robustness in the
presence of background noise of the proposed estimation method based on
realization theory, finding that despite stringent constrains on the allowed
noise level, exact dimension estimation can still be achieved.Comment: v3: accepted version. We would like to offer our gratitudes to the
editors and referees for their helpful and insightful opinions and feedback
- …
