1,106,213 research outputs found

    Social positioning: Designing the Seams between Social, Physical and Digital Space

    Get PDF
    Mobile settings are not only physically and digitally mediated; they are also inhabited by people - a social space. We argue that careful design exposing the connections, gaps, overlays and mismatches within and between physical, digital and social space allow for a better understanding and thereby mastering of the resulting combined space. Two concepts are explored in MobiTip, a social mobile service for exchanging opinions among peers: intramedia seams concerning network coverage and position technology, and intermedia seams between digitally transmitted tips and the physical, social context surrounding the user. We introduce social positioning as an alternative and complement to the current strive for seamless connectedness and exact positioning in physical space

    Optimal Opinion Control: The Campaign Problem

    Get PDF
    Opinion dynamics is nowadays a very common field of research. In this article we formulate and then study a novel, namely strategic perspective on such dynamics: There are the usual normal agents that update their opinions, for instance according the well-known bounded confidence mechanism. But, additionally, there is at least one strategic agent. That agent uses opinions as freely selectable strategies to get control on the dynamics: The strategic agent of our benchmark problem tries, during a campaign of a certain length, to influence the ongoing dynamics among normal agents with strategically placed opinions (one per period) in such a way, that, by the end of the campaign, as much as possible normals end up with opinions in a certain interval of the opinion space. Structurally, such a problem is an optimal control problem. That type of problem is ubiquitous. Resorting to advanced and partly non-standard methods for computing optimal controls, we solve some instances of the campaign problem. But even for a very small number of normal agents, just one strategic agent, and a ten-period campaign length, the problem turns out to be extremely difficult. Explicitly we discuss moral and political concerns that immediately arise, if someone starts to analyze the possibilities of an optimal opinion control.Comment: 47 pages, 12 figures, and 11 table

    The dynamics of public opinion under majority rules

    No full text
    This note explains the process of public opinion formation via a locally interactive, space-time analysis. The model we use is a special case of the general framework for modelling social interaction proposed in Blume and Durlauf (2001). In the reduced form of the model we study how each individual, when faced with the choice of one, out of two, opinions, tends to conform to the opinion held by the majority of her neighbours. We consider different, symmetric and asymmetric, majority rules. Depending on the specific behavioral rule, the aggregate process of opinion formation may display contagion on one specific opinion, or consensus among all individuals in the population, or co-existence of both opinions. Whenever consensus obtains, we observe the formation of homogeneous areas (clusters) that seem almost stationary along the dynamics

    Issues in NASA program and project management

    Get PDF
    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented

    Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions

    Full text link
    In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and enmities- evolve seeking for social balance, taking into account how similar agents' opinions are. We consider both the case where opinions have one and two dimensions. We find that our dynamics produces the segregation of agents into two cliques, with the opinions of agents in one clique differing from those in the other. Depending on the level of bounded confidence, the dynamics can produce either consensus of opinions within each clique or the coexistence of several opinion clusters in a clique. For the uni-dimensional case, the opinions in one clique are all below the opinions in the other clique, hence defining a "left clique" and a "right clique". In the two-dimensional case, our numerical results suggest that the two cliques are separated by a hyperplane in the opinion space. We also show that the phenomenon of unidimensional opinions identified by DeMarzo, Vayanos and Zwiebel (Q J Econ 2003) extends partially to our dynamics. Finally, in the context of politics, we comment about the possible relation of our results to the fragmentation of an ideology and the emergence of new political parties.Comment: 8 figures, PLoS ONE 11(10): e0164323, 201

    Compliments, Insults, and the Paradox of Pillow Talk

    Full text link
    I haven’t been a skinny girl since I was seven years old. At nine, I was told I wasn’t small enough to sit down and talk to the other girls. I didn’t “fit” and they wouldn’t make enough space for my body, or for my big opinions. [excerpt

    Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Full text link
    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine e.g. the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics and observables. Here we propose a more practical strategy, that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the dimension of the Hilbert space can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.Comment: v3: accepted version. We would like to offer our gratitudes to the editors and referees for their helpful and insightful opinions and feedback
    corecore