20,967 research outputs found

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case
    corecore