343,454 research outputs found

    Polynomial Size Analysis of First-Order Shapely Functions

    Get PDF
    We present a size-aware type system for first-order shapely function definitions. Here, a function definition is called shapely when the size of the result is determined exactly by a polynomial in the sizes of the arguments. Examples of shapely function definitions may be implementations of matrix multiplication and the Cartesian product of two lists. The type system is proved to be sound w.r.t. the operational semantics of the language. The type checking problem is shown to be undecidable in general. We define a natural syntactic restriction such that the type checking becomes decidable, even though size polynomials are not necessarily linear or monotonic. Furthermore, we have shown that the type-inference problem is at least semi-decidable (under this restriction). We have implemented a procedure that combines run-time testing and type-checking to automatically obtain size dependencies. It terminates on total typable function definitions.Comment: 35 pages, 1 figur

    Project SPACE: Solar Panel Automated Cleaning Environment

    Get PDF
    The goal of Project SPACE is to create an automated solar panel cleaner that will address the adverse impact of soiling on commercial photovoltaic cells. Specifically, we hoped to create a device that increases the maximum power output of a soiled panel by 10% (recovering the amount of power lost) while still costing under 500andoperatingforupto7.0years.Asuccessfuldesignshouldoperatewithouttheuseofwater.Thiswillhelpsolarpanelarraysachieveaproductionoutputclosertotheirmaximumpotentialandsavecompaniesoncostsassociatedenergygeneration.Thecurrentapparatusutilizesabrushcleaningsystemthatcleansonsetcleaningcycles.Thedeviceusesthecombinationofageartrain(with48pitchDelringears)anda12VDCmotortospinbotha5.00footlong,0.25inchdiametervacuumbrushshaftanddrivetwosetsoftwowheels.Thepowersourceforthedrivetrainisa12Vdeepcyclelead−acidbattery.Ourlightweightdesigneliminateswaterusageduringcleaningandreducesthepotentialdangersstemmingfrommanuallabor.Ourdesign’sretailpricewasestimatedtobearound500 and operating for up to 7.0 years. A successful design should operate without the use of water. This will help solar panel arrays achieve a production output closer to their maximum potential and save companies on costs associated energy generation. The current apparatus utilizes a brush cleaning system that cleans on set cleaning cycles. The device uses the combination of a gear train (with 48 pitch Delrin gears) and a 12V DC motor to spin both a 5.00 foot long, 0.25 inch diameter vacuum brush shaft and drive two sets of two wheels. The power source for the drive train is a 12V deep cycle lead-acid battery. Our light weight design eliminates water usage during cleaning and reduces the potential dangers stemming from manual labor. Our design’s retail price was estimated to be around 700 with a payback period of less than 3.5 years. To date, we have created a device that improves the efficiency of soiled solar panels by 3.5% after two runs over the solar panel. We hope that our final design will continue to expand the growth of solar energy globally

    Advanced Low-Floor Vehicle (ALFV) Specification Research

    Get PDF
    This report details the results of research on market comparison, operational cost efficiencies, and prototype tests conducted on a novel design for an Advanced Low Floor Vehicle (ALFV), flex-route transit bus. Section I describes how the need for such a bus arises from a combination of diminishing transit funding from the federal government and demographic and transportation factors. Section II describes the unique features of this bus design that render it suitable for rural and urban operation, including improved transit passenger and wheelchair accessibility, reduced maintenance, structural design features, safety provisions, and the technical specifications of this design. Section III details the potential differences in capital and operational costs of procuring and operating this bus in a fleet. Potential cost reductions due to the long-life vehicle concept, maneuverability, operational savings (from APTA Bus Roadeo tests), and reserve fleet savings are explored. Section IV refers to the Federal Transit Administration (FTA) new model bus tests (“Altoona Testing”). However, at the this time, the Altoona Bus Test Report for these tests is not yet released by the bus manufacturer, Ride Solution, Inc., as is its right under the Bus Testing Regulation. The report must be released to the public before this bus can be purchased by a transit agency using FTA funds. In addition to the standard Altoona Bus Test, additional research was conducted to determine the turning ability, suspension travel, ramp travel index, field of view for the driver, compliance to Americans with Disabilities Act (ADA) requirements, and timed assessment of wheelchair securement. Section IV also presents the results of these tests. Section V presents results from a market comparison that included the buses in this mid-size category that were tested at Altoona and are expected to be available for FTA grantees to purchase. The specifications and performance of the ALFV bus are compared with these buses. Section VI presents a flex-route utilization plan, and Section VII provides the results from a survey of transit professionals about their interest in the features of this bus design. Section VIII gives Ride Solution’s experience in developing the concept for ALFV. Conclusions of this report are presented in Section IX, followed by the references and appendices

    Internal Design of a Hydroponics Greenhouse for Tri Cycle Farms

    Get PDF
    Hydroponics is the agricultural technique of growing plants without soil, using other growing media and added nutrients in a solvent. It is an attractive agricultural method over conventional agriculture because it is more water efficient, is less labor intensive, yields higher quality crops in less time, and is easier to control. According to the Digital Journal, “hydroponics crop value is anticipated to grow to USD 27.29 Billion by 2022 at an estimated CAGR of 6.39% from 2015 to 2020” (Sawant, 2016). Alongside this growing market acceptance for hydroponics, there is also a local demand that requires only a small transportation cost. For the past several years, Tri Cycle Farms - a 501-(c)(3) non-profit urban farm in Fayetteville - has dreamt of building a hydroponics greenhouse because it would provide a source of sustainable financial income, a location for educational programming, and a means of battling food insecurity. Since August 2017, I have been working with Tri Cycle Farms to help make the hydroponics greenhouse project a reality. The objectives of this section of the overall project are 1) to determine desirable crops to be produced, 2) design the internal layout of the chosen greenhouse, and 3) design one hydroponics system using engineering design and fluid mechanics. This thesis report outlines the process of fulfilling these objectives, the justification behind the design decisions, and a discussion of the potential implications moving forward

    Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics

    Get PDF
    Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility
    • 

    corecore