326,687 research outputs found

    QKD from a microsatellite: the SOTA experience

    Full text link
    The transmission and reception of polarized quantum-limited signals from space is of capital interest for a variety of fundamental-physics experiments and quantum-communication protocols. Specifically, Quantum Key Distribution (QKD) deals with the problem of distributing unconditionally-secure cryptographic keys between two parties. Enabling this technology from space is a critical step for developing a truly-secure global communication network. The National Institute of Information and Communications Technology (NICT, Japan) performed the first successful measurement on the ground of a quantum-limited signal from a satellite in experiments carried out on early August in 2016. The SOTA (Small Optical TrAnsponder) lasercom terminal onboard the LEO satellite SOCRATES (Space Optical Communications Research Advanced Technology Satellite) was utilized for this purpose. Two non-orthogonally polarized signals in the ~800-nm band and modulated at 10 MHz were transmitted by SOTA and received in the single-photon regime by using a 1-m Cassegrain telescope on a ground station located in an urban area of Tokyo (Japan). In these experiments, after compensating the Doppler effect induced by the fast motion of the satellite, a QKD-enabling QBER (Quantum Bit Error Rate) below 5% was measured with estimated key rates in the order of several Kbit/s, proving the feasibility of quantum communications in a real scenario from space for the first time.Comment: 10 pages, 14 figure

    Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    Get PDF
    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented

    MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF
    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike. The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics. As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.

    Spaceborne CO2 laser communications systems

    Get PDF
    Projections of the growth of earth-sensing systems for the latter half of the 1980's show a data transmission requirement of 300 Mbps and above. Mission constraints and objectives lead to the conclusion that the most efficient technique to return the data from the sensing satellite to a ground station is through a geosynchronous data relay satellite. Of the two links that are involved (sensing satellite to relay satellite and relay satellite to ground), a laser system is most attractive for the space-to-space link. The development of CO2 laser systems for space-to-space applications is discussed with the completion of a 300 Mpbs data relay receiver and its modification into a transceiver. The technology and state-of-the-art of such systems are described in detail

    Modulation and coding technology for deep space and satellite applications

    Get PDF
    Modulation and coding research and development at the Jet Propulsion Laboratory (JPL) currently emphasize Deep Space Communications Systems and advanced near earth Commercial Satellite Communications Systems. The Deep Space Communication channel is extremely signal to noise ratio limited and has long transmission delay. The near earth satellite channel is bandwidth limited with fading and multipath. Recent code search efforts at JPL have found a long constraint, low rate convolutional code (15, 1/6) which, when concatenated with a ten bit Reed-Solomon (RS) code, provides a 2.1 dB gain over that of the Voyager spacecraft - the current standard. The new code is only 2 dB from the theoretical Shannon limit. A flight qualified version of the (15, 1/6) convolutional encoder was implemented on the Galileo Spacecraft to be launched later this year. An L-band mobile link, use of the Ka-band for personal communications, and the development of subsystem technology for the interconnection of satellite resources by using high rate optical inter-satellite links are noted

    ISAAC: Inflatable Satellite of an Antenna Array for Communications, volume 6

    Get PDF
    The results of a study to design an antenna array satellite using rigid inflatable structure (RIS) technology are presented. An inflatable satellite allows for a very large structure to be compacted for transportation in the Space Shuttle to the Space Station where it is assembled. The proposed structure resulting from this study is a communications satellite for two-way communications with many low-power stations on the ground. Total weight is 15,438 kilograms which is within the capabilities of the Space Shuttle. The satellite will have an equivalent aperture greater than 100 meters in diameter and will be operable in K and C band frequencies, with a total power requirement of 10,720 watts

    Data distribution satellite

    Get PDF
    A description is given of a data distribution satellite (DDS) system. The DDS would operate in conjunction with the tracking and data relay satellite system to give ground-based users real time, two-way access to instruments in space and space-gathered data. The scope of work includes the following: (1) user requirements are derived; (2) communication scenarios are synthesized; (3) system design constraints and projected technology availability are identified; (4) DDS communications payload configuration is derived, and the satellite is designed; (5) requirements for earth terminals and network control are given; (6) system costs are estimated, both life cycle costs and user fees; and (7) technology developments are recommended, and a technology development plan is given. The most important results obtained are as follows: (1) a satellite designed for launch in 2007 is feasible and has 10 Gb/s capacity, 5.5 kW power, and 2000 kg mass; (2) DDS features include on-board baseband switching, use of Ku- and Ka-bands, multiple optical intersatellite links; and (3) system user costs are competitive with projected terrestrial communication costs

    Satellite Power System. Concept development and evaluation program, volume 6: Construction and operations

    Get PDF
    The construction, operation, and maintenance requirements for a solar power satellite, including the space and ground systems, are reviewed. The basic construction guidelines are explained, and construction location options are discussed. The space construction tasks, equipment, and base configurations are discussed together with the operations required to place a solar power satellite in geosynchronous orbit. A rectenna construction technique is explained, and operation with the grid is defined. Maintenance requirements are summarized for the entire system. Key technology issues required for solar power satellite construction operations are defined

    NASA's Advanced Communications Technology Satellite (ACTS)

    Get PDF
    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described
    • …
    corecore