29 research outputs found

    The Age of the Soybean

    Get PDF
    The soybean is far more than just a versatile crop whose derivates serve the protein needs of a meatless diet. One of the worldโ€™s most important commodities, soy represents the embodiment of mechanised industrial agriculture and is one of the main actors behind the socioeconomic, political and ecological transformations of industrial farming in several world regions. Despite the cropโ€™s potential as a cheap source of vegetal protein for human consumers, most industrial soybean production has fuelled the global meat industrial complex, as animal feed. Soybean is thus, paradoxically, still a relatively โ€˜invisibleโ€™ crop to the public at large, although its global yields continue to increase at stupendous rates, lining the pockets of agribusiness and to the detriment of traditional agriculture. The transnational socio-ecological and economic entanglements characterising this versatile legumeโ€™s global expansion have prompted scholarly attention as researchers around the world have begun to unveil the main historical drivers behind the rise of the soybean in the global food chain. This book aims to expand the analysis, offering the most significant effort so far at an environmental history of soybeans. Interrogating the socioeconomic and ecological transformations determined by (and determining) the rise of soy in international food chains during the Great Acceleration, the volume gathers contributions from an international cast of researchers, working in numerous geographical contexts, from Japan and China, to India, African nations, the Southern Cone of Latin America, Northern Europe and the United States. Soybean farming, breeding, processing and marketing have bound together the histories of these diverse regions and altered beyond recognition their ecological and socio-economic contexts

    The Age of the Soybean

    Get PDF
    The soybean is far more than just a versatile crop whose derivates serve the protein needs of a meatless diet. One of the worldโ€™s most important commodities, soy represents the embodiment of mechanised industrial agriculture and is one of the main actors behind the socioeconomic, political and ecological transformations of industrial farming in several world regions. Despite the cropโ€™s potential as a cheap source of vegetal protein for human consumers, most industrial soybean production has fuelled the global meat industrial complex, as animal feed. Soybean is thus, paradoxically, still a relatively โ€˜invisibleโ€™ crop to the public at large, although its global yields continue to increase at stupendous rates, lining the pockets of agribusiness and to the detriment of traditional agriculture. The transnational socio-ecological and economic entanglements characterising this versatile legumeโ€™s global expansion have prompted scholarly attention as researchers around the world have begun to unveil the main historical drivers behind the rise of the soybean in the global food chain. This book aims to expand the analysis, offering the most significant effort so far at an environmental history of soybeans. Interrogating the socioeconomic and ecological transformations determined by (and determining) the rise of soy in international food chains during the Great Acceleration, the volume gathers contributions from an international cast of researchers, working in numerous geographical contexts, from Japan and China, to India, African nations, the Southern Cone of Latin America, Northern Europe and the United States. Soybean farming, breeding, processing and marketing have bound together the histories of these diverse regions and altered beyond recognition their ecological and socio-economic contexts

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Applying satellite remote sensing, unmanned systems, and models for water quality analysis

    Get PDF
    Transport of soils and sediment by runoff diminish the surface water quality of lakes/reservoirs and shrink reservoir capacity. Nutrients move with transported soil and sediment due to soil erosion by floods and high wind. Nutrients from land management practices such as farming, animal feeding operations, and wastewater treatment stimulate the growth of cyanobacteria in surface water bodies. Excessive nutrient loading or eutrophication with favorable hydrodynamics result in excessive growth of cyanobacteria called Harmful Algal Blooms (HABs). These cyanobacteria sometimes release microcystins which are toxic to humans when consumed. The biological decay of HABs cause ecological dead zones due to depletion of dissolved oxygen while reducing the utility of the reservoirs. From an ecosystem service provision and human health perspective, HABs represent a great water quality threat.Therefore monitoring and modeling the formation of HABs in surface water bodies is important. In freshwater reservoirs of Oklahoma and Kansas, HAB formations and occurrences have increased due to floods, agricultural practices, and rising earth temperatures due to global warming and climate change. In Oklahoma, Grand Lake O' the Cherokees (Grand Lake) had experienced a severe HAB outbreak in 2011. In Kansas, Marion reservoir experiences HAB formation almost every year. These two reservoirs provide an opportunity to study and understand HAB formation, predict them and provide warning advisories. All the in-situ data collected using unmanned systems in the freshwater reservoirs have been used to develop water quality and watershed models to understand the relationship between sediment, nutrient loadings and HAB formations

    by integrating deep learning, mechanistic model and field observations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋†๋ฆผ๊ธฐ์ƒํ•™, 2022. 8. Youngryel Ryu.Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population. However, the traditional anaerobic management leads rice production to consume ~40% of the irrigation water and emit ~10% of the global anthropogenic methane. A new paradigm for sustainable rice farming is urgently required amid challenges from increasing food demand, water scarcity, and reducing greenhouse gases emissions. Rice plants transpire considerable water overnight. Saving nighttime water loss is desirable but first need to understand the underlying mechanism of nocturnal stomatal opening. Apart from the night, optimizing daytime management is pivotal for designing an environmentally sustainable rice farming system. In a long-term strategy, detailed and reliable crop type map is compulsory to upscale new leaf level findings and site level methods to regional or global scale. Therefore, in this dissertation, we improved mechanistic understanding of nocturnal stomatal conductance in rice plants (Chapter II); provided an interdisciplinary and heuristic approach for designing an environmentally sustainable rice farming system with a case study in South Korea (Chapter III); and developed a new crop type referencing method by mining off-the-shelf Google Street View images to map crop types (Chapter IV). In chapter II, we proposed a โ€œcoordinated leaf traitโ€ hypothesis to explain the ecological mechanism of nocturnal stomatal conductance (gsn) in rice. We conducted an open-field experiment by applying drought, nutrient deficiency, and the combined drought-nutrient deficiency stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient deficiency. With abiotic stress as a random effect, gsn was strongly positively correlated with nocturnal respiration (Rn). Notably, gsn primed early morning photosynthesis, as follows: Rn (โ†‘) โ†’ gsn (โ†‘) โ†’ gsd (daytime stomatal conductance) (โ†‘) โ†’ A (assimilation) (โ†‘). This photosynthesis priming effect diminished after mid-morning. Leaves were cooled by gsn as follows: gsn (โ†‘) โ†’ E (transpiration) (โ†‘) โ†’ Tleaf (leaf temperature) (โ†“). However, our results clearly suggest that evaporative cooling did not reduce Rn cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that leaf trait coordination (Rn โˆ’ gsn โˆ’ gsd โˆ’ A) is likely the primary mechanism controlling gsn. In chapter III, we aimed to increase current crop yield, reduce irrigation water consumption, and tackle the dilemma to simultaneously reducing CH4 and N2O emissions in a flooded rice production system. By proposing a heuristic and holistic method, we optimized farm management beyond previous most emphasized irrigation regimes while also exploring niches from other pivotal options regarding sowing window, fertilization rate, tillage depth, and their interactions. Specifically, we calibrated and validated the process-based DNDC model with five years of eddy covariance observations. The DNDC model later was integrated with the non-dominated sorting genetic algorithm (NSGA-III) to solve the multi-objective optimization problem. We found that the optimized management would maintain or even increase current crop yield to its potential (~10 t/ha) while reducing more than 50% irrigation demand and GHGs (CH4 & N2O) emissions. Our results indicate that earlier sowing window and improvements on irrigation practice together would be pivotal to maximizing crop yield while sustaining environmental benefits. We found that the optimal fraction of non-flooded days was around 54% of growing season length and its optimal temporal distributions were primarily in vegetative stages. Our study shows that the present farm yield (8.3-8.9 t/ha) in study site not only has not achieved its potential level but also comes at a great environmental cost to water resources (604-810 mm/yr) and GHGs emissions (CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr). Furthermore, this simple method could further be applied to evaluate the environmental sustainability of a farming system under various climate and local conditions and to guide policymakers and farming practices with comprehensive solutions. In chapter IV, we apply a convolutional neural network (CNN) model to explore the efficacy of automatic ground truthing via Google Street View (GSV) images in two distinct farming regions: Illinois and the Central Valley in California. Ground reference data are an essential prerequisite for supervised crop mapping. The lack of a low-cost and efficient ground referencing method results in pervasively limited reference data and hinders crop classification. In this study, we demonstrate the feasibility and reliability of our new ground referencing technique by performing pixel-based crop mapping at the state level using the cloud-based Google Earth Engine platform. The mapping results are evaluated using the United States Department of Agriculture (USDA) crop data layer (CDL) products. From ~130,000 GSV images, the CNN model identified ~9,400 target crop images. These images are well classified into crop types, including alfalfa, almond, corn, cotton, grape, rice, soybean, and pistachio. The overall GSV image classification accuracy is 92% for the Central Valley and 97% for Illinois. Subsequently, we shifted the image geographical coordinates 2โ€“3 times in a certain direction to produce 31,829 crop reference points: 17,358 in Illinois, and 14,471 in the Central Valley. Evaluation of the mapping results with CDL products revealed satisfactory coherence. GSV-derived mapping results capture the general pattern of crop type distributions for 2011โ€“2019. The overall agreement between CDL products and our mapping results is indicated by R2 values of 0.44โ€“0.99 for the Central Valley and 0.81โ€“0.98 for Illinois. To show the applicational value of the proposed method in other countries, we further mapped rice paddy (2014โ€“2018) in South Korea which yielded fairly well outcomes (R2=0.91). These results indicate that GSV images used with a deep learning model offer an efficient and cost-effective alternative method for ground referencing, in many regions of the world.์Œ€(์˜ค๋ฆฌ์ž ์‚ฌํ‹ฐ๋ฐ”)์€ ์„ธ๊ณ„ ์ธ๊ตฌ์˜ 50% ์ด์ƒ์„ ๋จน์—ฌ ์‚ด๋ฆฌ๋Š” ์ค‘์š”ํ•œ ๊ณก๋ฌผ ์ž‘๋ฌผ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ˜๊ธฐ์„ฑ ๊ด€๋ฆฌ๋Š” ์Œ€ ์ƒ์‚ฐ์œผ๋กœ ๊ด€๊ฐœ์ˆ˜์˜ 40%๋ฅผ ์†Œ๋น„ํ•˜๊ณ  ์ „ ์„ธ๊ณ„ ์ธ๊ณต ๋ฉ”ํƒ„์˜ 10%๋ฅผ ๋ฐฐ์ถœํ•œ๋‹ค. ์‹๋Ÿ‰ ์ˆ˜์š” ์ฆ๊ฐ€, ๋ฌผ ๋ถ€์กฑ, ์˜จ์‹ค๊ฐ€์Šค ๋ฐฐ์ถœ ๊ฐ์†Œ ๋“ฑ์˜ ๊ณผ์ œ ์†์—์„œ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‹œ๊ธ‰ํ•˜๋‹ค. ๋ฒผ๋Š” ํ•˜๋ฃป๋ฐค ์‚ฌ์ด์— ์ƒ๋‹นํ•œ ์–‘์˜ ๋ฌผ์„ ๋‚ด๋ฟœ๋Š”๋‹ค. ์•ผ๊ฐ„ ์ˆ˜๋ถ„ ์†์‹ค์„ ์ค„์ด๋Š” ๊ฒƒ์€ ๋ฐ”๋žŒ์งํ•˜์ง€๋งŒ, ๋จผ์ € ์•ผ๊ฐ„ ๊ธฐ๊ณต ๊ฐœ๋ฐฉ์˜ ๊ธฐ๋ณธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์•ผ๊ฐ„๊ณผ ๋ณ„๋„๋กœ ์ฃผ๊ฐ„ ๊ฒฝ์˜์˜ ์ตœ์ ํ™”๋Š” ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์žฅ๊ธฐ ์ „๋žต์—์„œ, ์ƒˆ๋กœ์šด ์žŽ ์ˆ˜์ค€ ๋ฐœ๊ฒฌ๊ณผ ํ˜„์žฅ ์ˆ˜์ค€ ๋ฐฉ๋ฒ•์„ ์ง€์—ญ์  ๋˜๋Š” ์ „์—ญ์  ๊ทœ๋ชจ๋กœ ์ƒํ–ฅ ์กฐ์ •ํ•˜๋ ค๋ฉด ์ƒ์„ธํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘๋ฌผ ์œ ํ˜• ๋งต์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ๋†์‚ฌ์˜ ์•ผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„์— ๋Œ€ํ•œ ๊ธฐ๊ณ„์  ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค(์ œ2์žฅ). ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ํ•™์ œ ๊ฐ„ ๋ฐ ํœด๋ฆฌ์Šคํ‹ฑ ์ ‘๊ทผ๋ฒ• ์ œ๊ณต(์ œ3์žฅ). ๊ทธ๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ์ž‘๋ฌผ ์œ ํ˜• ์ฐธ์กฐ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ๊ธฐ์„ฑํ’ˆ์ธ Google Street View ์ด๋ฏธ์ง€๋ฅผ ๋งˆ์ด๋‹ํ•˜์—ฌ ์ž๋ฅด๊ธฐ ์œ ํ˜•์„ ๋งคํ•‘ํ•ฉ๋‹ˆ๋‹ค. 2์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ์˜ ์•ผํ–‰์„ฑ ๊ธฐ๊ณต ์ „๋„๋„(gsn)์˜ ์ƒํƒœํ•™์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด "ํ˜‘๋™๋œ ์žŽ ํ˜•์งˆ" ๊ฐ€์„ค์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ€๋ญ„, ์˜์–‘ ๊ฒฐํ• ๋ฐ ๊ฐ€๋ญ„-์˜์–‘์†Œ ๊ฒฐํ• ๋ณตํ•ฉ ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ์ ์šฉํ•˜์—ฌ ๋…ธ์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” gsn์ด ๊ฐ€๋ญ„์— ์˜ํ•ด ํฌ๊ฒŒ ๊ฐ์†Œํ•˜์ง€๋„ ์•Š๊ณ  ์˜์–‘ ๊ฒฐํ•์— ์˜ํ•ด ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์ง€๋„ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฌด์ƒ๋ฌผ์  ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ๋ฌด์ž‘์œ„ ํšจ๊ณผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ gsn์€ ์•ผ๊ฐ„ ํ˜ธํก(Rn)๊ณผ ๊ฐ•ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, gsn์€ Rn(โ†‘) โ†’ gsn(โ†‘) โ†’ gsd(์ฃผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„)(โ†‘) โ†’ A(๋™ํ™”)(โ†‘)์™€ ๊ฐ™์ด ์ด๋ฅธ ์•„์นจ ๊ด‘ํ•ฉ์„ฑ์„ ํ”„๋ผ์ด๋ฐํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ด‘ํ•ฉ์„ฑ ํ”„๋ผ์ด๋ฐ ํšจ๊ณผ๋Š” ์˜ค์ „ ์ค‘๋ฐ˜ ์ดํ›„์— ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ์žŽ์€ gsn์— ์˜ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ƒ‰๊ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: gsn(โ†‘) โ†’ E(์ฆ์‚ฐ)(โ†‘) โ†’ Tleaf(์žŽ ์˜จ๋„)(โ†“). ๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ์ฆ๋ฐœ ๋ƒ‰๊ฐ์ด Rn ๋น„์šฉ์„ ๊ฐ์†Œ์‹œํ‚ค์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ถ„๋ช…ํžˆ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” gsn์ด ๋ฌผ ๋ฐ ์˜์–‘์†Œ ๊ฐ€์šฉ์„ฑ๋ณด๋‹ค ํƒ„์†Œ ํ˜ธํก ๋ฐ ๋™ํ™”์™€ ๋” ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฉฐ ์žŽ ํ˜•์งˆ ์กฐ์ •(Rn - gsn - gsd - A)์ด gsn์„ ์ œ์–ดํ•˜๋Š” ์ฃผ์š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ผ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ œ3์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ํ˜„์žฌ์˜ ์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ณ  ๊ด€๊ฐœ ์šฉ์ˆ˜ ์†Œ๋น„๋ฅผ ์ค„์ด๋ฉฐ ์นจ์ˆ˜๋œ ์Œ€ ์ƒ์‚ฐ ์‹œ์Šคํ…œ์—์„œ CH4์™€ N2O ๋ฐฐ์ถœ๋Ÿ‰์„ ๋™์‹œ์— ์ค„์ด๋Š” ๋”œ๋ ˆ๋งˆ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ํœด๋ฆฌ์Šคํ‹ฑํ•˜๊ณ  ์ „์ฒด๋ก ์  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•จ์œผ๋กœ์จ, ์šฐ๋ฆฌ๋Š” ์ด์ „์— ๊ฐ€์žฅ ๊ฐ•์กฐ๋˜์—ˆ๋˜ ๊ด€๊ฐœ ์ฒด์ œ๋ฅผ ๋„˜์–ด ๋†์žฅ ๊ด€๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ๊ณผ ๋™์‹œ์— ํŒŒ์ข… ์ฐฝ, ์ˆ˜์ •๋ฅ , ๊ฒฝ์ž‘ ๊นŠ์ด ๋ฐ ์ด๋“ค์˜ ์ƒํ˜ธ ์ž‘์šฉ๊ณผ ๊ด€๋ จ๋œ ๋‹ค๋ฅธ ์ค‘์ถ”์  ์˜ต์…˜์˜ ํ‹ˆ์ƒˆ๋ฅผ ํƒ์ƒ‰ํ–ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” 5๋…„๊ฐ„์˜ ์™€๋ฅ˜ ๊ณต๋ถ„์‚ฐ ๊ด€์ฐฐ๋กœ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ DNDC ๋ชจ๋ธ์„ ๊ต์ •ํ•˜๊ณ  ๊ฒ€์ฆํ–ˆ๋‹ค. DNDC ๋ชจ๋ธ์€ ๋‚˜์ค‘์— ๋‹ค์ค‘ ๊ฐ๊ด€์  ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ง€๋ฐฐ์  ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ๋“ฌ(NSGA-III)๊ณผ ํ†ตํ•ฉ๋˜์—ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ตœ์ ํ™”๋œ ๊ด€๋ฆฌ๋ฅผ ํ†ตํ•ด 50% ์ด์ƒ์˜ ๊ด€๊ฐœ ์ˆ˜์š”์™€ GHG(CH4 & N2O) ๋ฐฐ์ถœ๋Ÿ‰์„ ์ค„์ด๋ฉด์„œ ํ˜„์žฌ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ž ์žฌ๋ ฅ(~10t/ha)๊นŒ์ง€ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋” ์ด๋ฅธ ํŒŒ์ข… ๊ธฐ๊ฐ„๊ณผ ๊ด€๊ฐœ ๊ด€๊ฐœ ๊ด€ํ–‰์˜ ๊ฐœ์„ ์ด ํ™˜๊ฒฝ์  ์ด์ต์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์ถ”์ ์ผ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ™์ˆ˜ ์—†๋Š” ๋‚ ์˜ ์ตœ์  ๋ถ€๋ถ„์ด ์„ฑ์žฅ๊ธฐ ๊ธธ์ด์˜ ์•ฝ 54%์˜€๊ณ  ์ตœ์ ์˜ ์‹œ๊ฐ„ ๋ถ„ํฌ๋Š” ์ฃผ๋กœ ์‹๋ฌผ ๋‹จ๊ณ„์— ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์—ฐ๊ตฌ๋Š” ์—ฐ๊ตฌ ํ˜„์žฅ์˜ ํ˜„์žฌ ๋†์žฅ ์ˆ˜ํ™•๋Ÿ‰(8.3-8.9 t/ha)์ด ์ž ์žฌ์  ์ˆ˜์ค€์„ ๋‹ฌ์„ฑํ–ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜์ž์›(604-810 mm/yr)๊ณผ GHGs ๋ฐฐ์ถœ(CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr)์— ๋ง‰๋Œ€ํ•œ ํ™˜๊ฒฝ ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์ด ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๊ธฐํ›„ ๋ฐ ์ง€์—ญ ์กฐ๊ฑด ํ•˜์—์„œ ๋†์—… ์‹œ์Šคํ…œ์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •์ฑ… ์ž…์•ˆ์ž์™€ ๋†์—… ๊ด€ํ–‰์„ ํฌ๊ด„์ ์ธ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ์•ˆ๋‚ดํ•˜๋Š” ๋ฐ ์ถ”๊ฐ€๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ4์žฅ์—์„œ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN) ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๋‘ ๊ฐœ์˜ ๊ตฌ๋ณ„๋˜๋Š” ๋†์—… ์ง€์—ญ์—์„œ ๊ตฌ๊ธ€ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ(GSV) ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์ž๋™ ์ง€์ƒ ํŠธ๋Ÿฌ์‹ฑ์˜ ํšจ๊ณผ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ผ๋ฆฌ๋…ธ์ด์™€ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์˜ ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ. ์ง€์ƒ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ๋…๋œ ์ž‘๋ฌผ ๋งคํ•‘์„ ์œ„ํ•œ ํ•„์ˆ˜ ์ „์ œ ์กฐ๊ฑด์ด๋‹ค. ์ €๋ ดํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ง€์ƒ ์ฐธ์กฐ ๋ฐฉ๋ฒ•์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ œํ•œ๋˜๊ณ  ์ž‘๋ฌผ ๋ถ„๋ฅ˜๋ฅผ ๋ฐฉํ•ดํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ Google ์–ด์Šค ์—”์ง„ ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ ์ˆ˜์ค€์—์„œ ํ”ฝ์…€ ๊ธฐ๋ฐ˜ ํฌ๋กญ ๋งคํ•‘์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ง€์ƒ ์ฐธ์กฐ ๊ธฐ์ˆ ์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” ๋ฏธ๊ตญ ๋†๋ฌด๋ถ€(USDA) ์ž‘๋ฌผ ๋ฐ์ดํ„ฐ์ธต(CDL) ์ œํ’ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€๋œ๋‹ค. ์•ฝ 130,000๊ฐœ์˜ GSV ์ด๋ฏธ์ง€์—์„œ CNN ๋ชจ๋ธ์€ ์•ฝ 9,400๊ฐœ์˜ ๋ชฉํ‘œ ํฌ๋กญ ์ด๋ฏธ์ง€๋ฅผ ์‹๋ณ„ํ–ˆ๋‹ค. ์ด ์ด๋ฏธ์ง€๋“ค์€ ์•ŒํŒ”ํŒŒ, ์•„๋ชฌ๋“œ, ์˜ฅ์ˆ˜์ˆ˜, ๋ฉดํ™”, ํฌ๋„, ์Œ€, ์ฝฉ, ํ”ผ์Šคํƒ€์น˜์˜ค ๋“ฑ์˜ ์ž‘๋ฌผ ์œ ํ˜•์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋œ๋‹ค. ์ „์ฒด GSV ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 92%, ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 97%์ด๋‹ค. ๊ทธ ํ›„ ์ด๋ฏธ์ง€ ์ง€๋ฆฌ์  ์ขŒํ‘œ๋ฅผ ํŠน์ • ๋ฐฉํ–ฅ์œผ๋กœ 2~3ํšŒ ์ด๋™ํ•˜์—ฌ 31,829๊ฐœ์˜ ํฌ๋กญ ๊ธฐ์ค€์ ์„ ์ƒ์„ฑํ–ˆ๋‹ค. ์ฆ‰, ์ผ๋ฆฌ๋…ธ์ด์—์„œ 17,358๊ฐœ, ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์—์„œ 14,471๊ฐœ์˜€๋‹ค. CDL ์ œํ’ˆ์œผ๋กœ ๋งคํ•‘ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ์ผ๊ด€์„ฑ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. GSV์—์„œ ํŒŒ์ƒ๋œ ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” 2011-2019๋…„ ์ž‘๋ฌผ ์œ ํ˜• ๋ถ„ํฌ์˜ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ํฌ์ฐฉํ•œ๋‹ค. CDL ์ œํ’ˆ๊ณผ ์šฐ๋ฆฌ์˜ ๋งคํ•‘ ๊ฒฐ๊ณผ ์‚ฌ์ด์˜ ์ „์ฒด ํ•ฉ์น˜๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 0.44โ€“0.99์˜ R2 ๊ฐ’๊ณผ ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 0.81โ€“0.98์˜ R2 ๊ฐ’์œผ๋กœ ํ‘œ์‹œ๋œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๋‹ค๋ฅธ ๊ตญ๊ฐ€์—์„œ ์ ์šฉ ๊ฐ€์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, ๊ฝค ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์€ ํ•œ๊ตญ์˜ ๋…ผ(2014โ€“2018)์„ ์ถ”๊ฐ€๋กœ ๋งคํ•‘ํ–ˆ๋‹ค(R2=0.91). ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ๋˜๋Š” GSV ์ด๋ฏธ์ง€๊ฐ€ ์„ธ๊ณ„์˜ ๋งŽ์€ ์ง€์—ญ์—์„œ ์ง€์ƒ ์ฐธ์กฐ๋ฅผ ์œ„ํ•œ ํšจ์œจ์ ์ด๊ณ  ๋น„์šฉ ํšจ์œจ์ ์ธ ๋Œ€์ฒด ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.1. Abstract 3 LIST OF FIGURES 9 LIST OF TABLES 13 ACKNOWLEDGEMENTS 14 Chapter I. Introduction 15 1.1. Study Background 15 1.2. Purpose of Research 15 Chapter II. Nocturnal stomatal conductance in rice: a coordinating bridge between prior respiration and photosynthesis next dawn 17 Abstract 17 1. Introduction 18 2. Materials and Methods 22 2.1 Plants and growth conditions 22 2.2 Leaf physiological traits 22 2.3 Rapid A/Ci response curves 24 2.4 Stomatal anatomy measurements 24 2.5 Statistical analyses 24 3. Results 25 3.1 Effects of abiotic stress on leaf traits 25 3.2 Nighttime leaf physiological traits 26 3.3 Significant priming effects of gsn on early morning photosynthesis (~5:00 โ€“ 7:00) 27 3.4 Path analyses only support the leaf trait coordination 28 3.5 Impacts of gsn on gsd and Amax under light-saturated conditions 29 3.6 Photosynthesis priming effects not detected after mid-morning (9:00) 31 4. Discussion 32 4.1 Abiotic stress results: Implications for different hypotheses 33 4.2 Enhanced carbon assimilation through coordinated regulation by gsn 34 4.3 Evaporative cooling: Passive thermoregulation via leaf trait coordination 36 References 37 Chapter III. Multi-objective optimization of crop yield, water consumption, and greenhouse gases emissions for sustainable rice production 42 Abstract 42 1. Introduction 43 2. Materials and methods 46 2.1 Study site 46 2.2 DNDC model 46 2.3 In situ data 47 2.4 Multi-objective optimization (MOO) algorithm 48 2.5 DNDC-NSGA-III integration and optimization 48 3. Results 50 3.1 DNDC model validation 50 3.2 The gaps between the current farming outcomes and optimized objectives 53 3.3 Approaching Pareto fronts through the heuristic and holistic management 55 3.4 The gaps between current farming practices to potential crop yield with optimal holistic management 56 4. Discussion 58 4.1 Could heuristic and holistic management increase current rice yield with less irrigation water? 58 4.2 Could heuristic and holistic management simultaneously reduce CH4 and N2O emissions? 59 4.3 Limitations and uncertainties 60 Reference 61 Chapter IV. Exploring Google Street View with Deep Learning for Crop Type Mapping 70 Abstract 70 1. Introduction 71 2. Materials and Methods 74 2.1 Study area 74 2.2 General methodology 75 2.3 Google Street View image collection 76 2.4 CNN model training and validation 77 2.5 Producing ground reference data and quality control 79 2.6 Mapping crop types 80 2.7 Mapping results evaluation 81 2.8 Additional test case 82 3. Results 83 3.1 GSV image classification 83 3.2 Producing ground reference data from classified GSV images 84 3.3 Mapping using the GSV derived ground reference 86 4. Discussion 96 4.1 Can we use GSV images to efficiently produce low-cost, sufficient, and reliable crop type ground reference data covering large areas? 96 4.2 Can we use GSV-derived reference data as โ€œground truthโ€ to map crop types for large areas spanning many years? 97 Appendix 99 References 105 Chapter V. Conclusions 123 Supplementary Information Chapter II 125 Supplementary Information Chapter III 131 Supplementary Information Chapter IV 135 5. Abstract in Korean 138๋ฐ•

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    System Engineering Analyses for the Study of Future Multispectral Land Imaging Satellite Sensors for Vegetation Monitoring

    Get PDF
    Vegetation monitoring is one of the key applications of earth observing systems. Landsat data have spatial resolution of 30 meters, moderate temporal coverage, and reasonable spectral sampling to capture key vegetation features. These characteristics of Landsat make it a good candidate for generating vegetation monitoring products. Recently, the next satellite in the Landsat series has been under consideration and different concepts have been proposed. In this research, we studied the impact on vegetation monitoring of two proposed potential design concepts: a wider field-of-view (FOV) instrument and the addition of red-edge spectral band(s). Three aspects were studied in this thesis: First, inspired by the potential wider FOV design, the impacts of a detector relative spectral response (RSR) central wavelength shift effect at high angles of incidence (AOI) on the radiance signal were studied and quantified. Results indicate: 1) the RSR shift effect is band-dependent and more significant in the green, red and SWIR 2 bands; 2) At high AOI, the impact of the RSR shift effect will exceed sensor noise specifications in all bands except the SWIR 1 band; and 3) The RSR shift will cause SWIR2 band more to be sensitive to atmospheric conditions. Second, also inspired by the potential wider FOV design, the impacts of the potential new wider angular observations on vegetation monitoring scientific products were studied. Both crop classification and biophysical quantity retrieval applications were studied using the simulation code DIRSIG and the canopy radiative transfer model PROSAIL. It should be noted that the RSR shift effect was also considered. Results show that for single view observation based analysis, the higher view angular observations have limited influence on both applications. However, for situations where two different angular observations are available potentially from two platforms, up to 4% improvement for crop classification and 2.9% improvement for leaf chlorophyll content retrieval were found. Third, to quantify the benefits of a potential new design with red-edge band(s), the impact of adding red-edge spectral band(s) in future Landsat instruments on agroecosystem leaf area index (LAI) and canopy chlorophyll content (CCC) retrieval were studied using a real dataset. Three major retrieval approaches were tested, results show that a potential new spectral band located between the Landsat-8 Operational Land Imager (OLI) red and NIR bands slightly improved the retrieval accuracy (LAI: R2 of 0.787 vs. 0.810 for empirical vegetation index regression approach, 0.806 vs. 0.828 for look-up-table inversion approach, and 0.925 vs. 0.933 for machine learning approach; CCC: R2 of 0.853 vs. 0.875 for empirical vegetation index regression approach, 0.500 vs. 0.570 for look-up-table inversion approach, and 0.854 vs. 0.887 for machine learning approach). In general, for the potential wider FOV design, the RSR shift effect was found to cause noticable radiance signal difference that is higher than detector noise in all OLI bands except SWIR1 band, which is not observed in the current OLI design with its 15 degree FOV. Also both the new wider angular observations and potential red-edge band(s) were found to slightly improve the vegetation monitoring product accuracy. In the future, the RSR shift effect in other optical designs should be evaluated since this study assumed the angle reaching the filter array is the same as the angle reaching the sensor. In addition to improve the accuracy of the off angle imaging study, a 3D vegetation geometry model should be explored for vegetation monitoring related studies instead of the 2D PROSAIL model used in this thesis

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on โ€œRemote Sensing in Agriculture: State-of-the-Artโ€ gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue
    corecore