17,619 research outputs found

    Source-Channel Coding under Energy, Delay and Buffer Constraints

    Get PDF
    Source-channel coding for an energy limited wireless sensor node is investigated. The sensor node observes independent Gaussian source samples with variances changing over time slots and transmits to a destination over a flat fading channel. The fading is constant during each time slot. The compressed samples are stored in a finite size data buffer and need to be delivered in at most dd time slots. The objective is to design optimal transmission policies, namely, optimal power and distortion allocation, over the time slots such that the average distortion at destination is minimized. In particular, optimal transmission policies with various energy constraints are studied. First, a battery operated system in which sensor node has a finite amount of energy at the beginning of transmission is investigated. Then, the impact of energy harvesting, energy cost of processing and sampling are considered. For each energy constraint, a convex optimization problem is formulated, and the properties of optimal transmission policies are identified. For the strict delay case, d=1d=1, 2D2D waterfilling interpretation is provided. Numerical results are presented to illustrate the structure of the optimal transmission policy, to analyze the effect of delay constraints, data buffer size, energy harvesting, processing and sampling costs.Comment: 30 pages, 15 figures. Submitted to IEEE Transactions on Wireless Communication

    Energy Management Policies for Energy-Neutral Source-Channel Coding

    Full text link
    In cyber-physical systems where sensors measure the temporal evolution of a given phenomenon of interest and radio communication takes place over short distances, the energy spent for source acquisition and compression may be comparable with that used for transmission. Additionally, in order to avoid limited lifetime issues, sensors may be powered via energy harvesting and thus collect all the energy they need from the environment. This work addresses the problem of energy allocation over source acquisition/compression and transmission for energy-harvesting sensors. At first, focusing on a single-sensor, energy management policies are identified that guarantee a maximal average distortion while at the same time ensuring the stability of the queue connecting source and channel encoders. It is shown that the identified class of policies is optimal in the sense that it stabilizes the queue whenever this is feasible by any other technique that satisfies the same average distortion constraint. Moreover, this class of policies performs an independent resource optimization for the source and channel encoders. Analog transmission techniques as well as suboptimal strategies that do not use the energy buffer (battery) or use it only for adapting either source or channel encoder energy allocation are also studied for performance comparison. The problem of optimizing the desired trade-off between average distortion and delay is then formulated and solved via dynamic programming tools. Finally, a system with multiple sensors is considered and time-division scheduling strategies are derived that are able to maintain the stability of all data queues and to meet the average distortion constraints at all sensors whenever it is feasible.Comment: Submitted to IEEE Transactions on Communications in March 2011; last update in July 201

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac
    • …
    corecore