1,072 research outputs found

    Semantic mutation testing

    Get PDF
    This is the Pre-print version of the Article. The official published version can be obtained from the link below - Copyright @ 2011 ElsevierMutation testing is a powerful and flexible test technique. Traditional mutation testing makes a small change to the syntax of a description (usually a program) in order to create a mutant. A test suite is considered to be good if it distinguishes between the original description and all of the (functionally non-equivalent) mutants. These mutants can be seen as representing potential small slips and thus mutation testing aims to produce a test suite that is good at finding such slips. It has also been argued that a test suite that finds such small changes is likely to find larger changes. This paper describes a new approach to mutation testing, called semantic mutation testing. Rather than mutate the description, semantic mutation testing mutates the semantics of the language in which the description is written. The mutations of the semantics of the language represent possible misunderstandings of the description language and thus capture a different class of faults. Since the likely misunderstandings are highly context dependent, this context should be used to determine which semantic mutants should be produced. The approach is illustrated through examples with statecharts and C code. The paper also describes a semantic mutation testing tool for C and the results of experiments that investigated the nature of some semantic mutation operators for C

    RePLEX: A Model-Based Reengineering Tool for PLEX Telecommunication Systems

    Get PDF
    Maintenance of complex legacy software systems is a challenging task. In the first place, maintenance requires understanding the system. Reverse engineering and reengineering tools, which make the design of the current system available on-line and which support planning and performing changes to the system, are urgently needed. We present a new tool for reengineering telecommunication systems, recovering the current architecture, and extracting state machines reflecting the system behavior. The tool is based on a structure graph of the architecture and allows architectural modifications with according code changes. The modifications are specified as graph transformations using FUJABA enabling the generation of a Java prototype, which is accessible via a GUI based on the Graphical Editor Framework (GEF) plug-in for the Eclipse workbench

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved

    Language Convergence Infrastructure

    Get PDF
    The process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind it that automates the convergence process, hides negligible back-en

    Countering Network Worms Through Automatic Patch Generation

    Full text link

    Some issues in the 'archaeology' of software evolution

    Get PDF
    During a software project's lifetime, the software goes through many changes, as components are added, removed and modified to fix bugs and add new features. This paper is intended as a lightweight introduction to some of the issues arising from an `archaeological' investigation of software evolution. We use our own work to look at some of the challenges faced, techniques used, findings obtained, and lessons learnt when measuring and visualising the historical changes that happen during the evolution of software

    GAMESPECT: A Composition Framework and Meta-Level Domain Specific Aspect Language for Unreal Engine 4

    Get PDF
    Game engine programming involves a great number of software components, many of which perform similar tasks; for example, memory allocation must take place in the renderer as well as in the creation routines while other tasks such as error logging must take place everywhere. One area of all games which is critical to the success of the game is that of game balance and tuning. These balancing initiatives cut across all areas of code from the player and AI to the mission manager. In computer science, we’ve come to call these types of concerns “cross cutting”. Aspect oriented programming was developed, in part, to solve the problems of cross cutting: employing “advice” which can be incorporated across different pieces of functionality. Yet, despite the prevalence of a solution, very little work has been done to bring cross cutting to game engine programming. Additionally, the discipline involves a heavy amount of code rewriting and reuse while simultaneously relying on many common design patterns that are copied from one project to another. In the case of game balance, the code may be wildly different across two different games despite the fact that similar tasks are being done. These two problems are exacerbated by the fact that almost every game engine has its own custom DSL (domain specific language) unique to that situation. If a DSL could showcase the areas of cross cutting concerns while highlighting the ability to capture design patterns that can be used across games, significant productivity savings could be achieved while simultaneously creating a common thread for discussion of shared problems within the domain. This dissertation sought to do exactly that- create a metalanguage called GAMESPECT which supports multiple styles of DSLs while bringing aspect-oriented programming into the DSL’s to make them DSAL (domain specific aspect languages). The example cross cutting concern was game balance and tuning since it’s so pervasive and important to gaming. We have created GAMESPECT as a language and a composition framework which can assist engine developers and game designers in balancing their games, forming one central place for game balancing concerns even while these concerns may cross different languages and locations inside the source code. Generality was measured by showcasing the composition specifications in multiple contexts and languages. In addition to evaluating generality and performance metrics, effectiveness was be measured. Specifically, comparisons were made between a balancing initiative when performed with GAMESPECT vs a traditional methodology. In doing so, this work shows a clear advantage to using a Metalanguage such as GAMESPECT for this task. In general, a line of code reduction of 9-40% per task was achieved with negligible effects to performance. The use of a metalanguage in Unreal Engine 4 is a starting point to further discussions concerning other game engines. In addition, this work has implications beyond video game programming. The work described highlights benefits which might be achieved in other disciplines where design pattern implementations and cross-cutting concern usage is high; the real time simulation field and the field of Windows GUI programming are two examples of future domains
    • …
    corecore