615 research outputs found

    Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Thode, A., Wright, D., & Chapman, R. Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. The Journal of the Acoustical Society of America, 147(3), (2020): 1897, doi:10.1121/10.0000937.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f  1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.This work was supported by the Office of Naval Research (Task Force Ocean, project N00014-19-1-2627) and by the North Pacific Research Board (project 1810). Original warping developments were supported by the French Delegation Generale de l'Armement

    Compressive Matched-Field Processing

    Full text link
    Source localization by matched-field processing (MFP) generally involves solving a number of computationally intensive partial differential equations. This paper introduces a technique that mitigates this computational workload by "compressing" these computations. Drawing on key concepts from the recently developed field of compressed sensing, it shows how a low-dimensional proxy for the Green's function can be constructed by backpropagating a small set of random receiver vectors. Then, the source can be located by performing a number of "short" correlations between this proxy and the projection of the recorded acoustic data in the compressed space. Numerical experiments in a Pekeris ocean waveguide are presented which demonstrate that this compressed version of MFP is as effective as traditional MFP even when the compression is significant. The results are particularly promising in the broadband regime where using as few as two random backpropagations per frequency performs almost as well as the traditional broadband MFP, but with the added benefit of generic applicability. That is, the computationally intensive backpropagations may be computed offline independently from the received signals, and may be reused to locate any source within the search grid area

    Trans-dimensional inversion of modal dispersion data on the New England Mud Patch

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Dosso, S. E., Eleftherakis, D., & Chapman, N. R. Trans-dimensional inversion of modal dispersion data on the New England Mud Patch. IEEE Journal of Oceanic Engineering, 45(1), (2020): 116-130, doi:10.1109/JOE.2019.2896389.This paper presents single receiver geoacoustic inversion of two independent data sets recorded during the 2017 seabed characterization experiment on the New England Mud Patch. In the experimental area, the water depth is around 70 m, and the seabed is characterized by an upper layer of fine grained sediments with clay (i.e., mud). The first data set considered in this paper is a combustive sound source signal, and the second is a chirp emitted by a J15 source. These two data sets provide differing information on the geoacoustic properties of the seabed, as a result of their differing frequency content, and the dispersion properties of the environment. For both data sets, source/receiver range is about 7 km, and modal time-frequency dispersion curves are estimated using warping. Estimated dispersion curves are then used as input data for a Bayesian trans-dimensional inversion algorithm. Subbottom layering and geoacoustic parameters (sound speed and density) are thus inferred from the data. This paper highlights important properties of the mud, consistent with independent in situ measurements. It also demonstrates how information content differs for two data sets collected on reciprocal tracks, but with different acoustic sources and modal content.10.13039/100000006-Office of Naval Research 10.13039/100007297-Office of Naval Research Globa

    Analyzing sound speed fluctuations in shallow water from group-velocity versus phase-velocity data representation

    Get PDF
    International audienceData collected over more than eight consecutive hours between two source-receiver arrays in a shallow water environment are analyzed through the physics of the waveguide invariant. In particular, the use of vertical arrays on both the source and receiver sides provides source and receiver angles in addition to travel-times associated with a set of eigenray paths in the waveguide. From the travel-times and the source-receiver angles, the eigenrays are projected into a group-velocity versus phase-velocity (Vg-Vp) plot for each acquisition. The time evolution of the Vg-Vp representation over the 8.5-h long experiment is discussed. Group speed fluctuations observed for a set of eigenrays with turning points at different depths in the water column are compared to the Brunt-Väisälä frequency

    Source localization in a time-varying ocean waveguide

    Get PDF
    One of the most stringent impairments in matched-field processing is the impact of missing or erroneous environmental information on the final source location estimate. This problem is known in the literature as model mismatch and is strongly frequency dependent. Another unavoidable factor that contributes to model mismatch is the natural time and spatial variability of the ocean waveguide. As a consequence, most of the experimental results obtained to date focus on short source-receiver ranges (usually <5 km), stationary sources, reduced time windows and frequencies generally below 600 Hz. This paper shows that MFP source localization can be made robust to time–space environmental mismatch if the parameters responsible for the mismatch are clearly identified, properly modeled and (time-)adaptively estimated by a focalization procedure prior to MFP source localization. The data acquired during the ADVENT’99 sea trial at 2, 5, and 10 km source-receiver ranges and in two frequency bands, below and above 600 Hz, provided an excellent opportunity to test the proposed techniques. The results indicate that an adequate parametrization of the waveguide is effective up to 10 km range in both frequency bands achieving a precise localization during the whole recording of the 5 km track, and most of the 10 km track. It is shown that the increasing MFP dependence on erroneous environmental information in the higher frequency and at longer ranges can only be accounted for by including a time dependent modeling of the water column sound speed profile.SACLANTCEN; PRAXIS XXI, FCT

    Efficient inversion methods in underwater acoustics

    Get PDF
    This dissertation describes efficient methods developed and implemented for source localization and sound speed and bottom depth estimation using sound propagation in the ocean. The proposed inversion techniques are based on the linearization of the generally non-linear inverse problem of parameter estimation in underwater acoustics. These techniques take into account properties of the ocean environment and are accurate in their estimation results without being prohibitively computationally intensive. For the inversion, select ray paths are taken into account: the direct, first surface bounce, and first bottom bounce. Ray travel time derivatives with respect to parameters that affect path arrival times are obtained analytically. These derivatives and a first order expansion are then used to find estimates of unknown parameters through replica and true paths; replica paths are generated using ray theory for underwater sound propagation and true paths are identified from measured time series. The linearization scheme works efficiently for the estimation of geometric parameters such as the source and receiver location coordinates and the depth of the water column. It is also successful in estimating the sound speed profile in the ocean using empirical orthogonal functions. In this work, the linearization inversion technique is applied to marine mammal tracking, and it is also used with real data collected during the Haro Strait experiment for source and receiver localization. For the Haro Strait data, inversion using linearization is also compared to matched-field processing, which estimates source location and geoacoustic parameters through a full field matching approach

    Selected Topics of the Past Thirty Years in Ocean Acoustics

    Get PDF
    This paper reviews some of the highlights of selected topics in ocean acoustics during the thirty years that have passed since the founding of the Journal of Theoretical and Computational Acoustics. Advances in computational methods and computers helped to make computational ocean acoustics a vibrant area of research during that period. The parabolic equation method provides an unrivaled combination of accuracy and efficiency for propagation problems in which the bathymetry, sound speed, and other environmental parameters vary in the horizontal directions. The extension of this approach to cases involving layers that support shear waves has been an active area of research throughout the thirty year period. Interest in basin-scale and global-scale propagation was stimulated by the Heard Island Feasibility Test for monitoring climate change in terms of changes in travel time that occur as the temperature of the ocean rises. Diminishing ice cover in the Arctic, which is one of the consequences of climate change, has stimulated renewed interest in Arctic acoustics during the past decade. Reverberation is a challenging problem that was the topic of a major research program during the beginning of the thirty year period. An innovative approach for making it feasible to solve such problems was applied to data for reverberation from the seafloor and from schools of fish, and some of the findings were featured in Science and Nature. Source localization is one of the core problems in ocean acoustics. When applied on a 2-D array of receivers, an approach based on the eigenvectors of the covariance matrix is capable of separating the signals from different sources from each other, determining when this partitioning step is successful, and tracking sources that cross each other in bearing; one of the advantages of this approach is that it does not require environmental information or solutions of the wave equation. Geoacoustic inversion for estimating the layer structure, wave speeds, density, and other parameters of ocean bottoms has also been a topic of interest throughout the thirty year period
    • …
    corecore