935 research outputs found

    Oscillatory Network Activity in Brain Functions and Dysfunctions

    Get PDF
    Recent experimental studies point to the notion that the brain is a complex dynamical system whose behaviors relating to brain functions and dysfunctions can be described by the physics of network phenomena. The brain consists of anatomical axonal connections among neurons and neuronal populations in various spatial scales. Neuronal interactions and synchrony of neuronal oscillations are central to normal brain functions. Breakdowns in interactions and modifications in synchronization behaviors are usual hallmarks of brain dysfunctions. Here, in this dissertation for PhD degree in physics, we report discoveries of brain oscillatory network activity from two separate studies. These studies investigated the large-scale brain activity during tactile perceptual decision-making and epileptic seizures. In the perceptual decision-making study, using scalp electroencephalography (EEG) recordings of brain potentials, we investigated how oscillatory activity functionally organizes different neocortical regions as a network during a tactile discrimination task. While undergoing EEG recordings, blindfolded healthy participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. Based on the current dipole modeling in the brain, we found that the source-level peak activity appeared in the left primary somatosensory cortex (SI), right lateral occipital complex (LOC), right posterior intraparietal sulcus (pIPS) and finally left dorsolateral prefrontal cortex (dlPFC) at 45, 130, 160 and 175 ms respectively. Spectral interdependency analysis showed that fine tactile discrimination is mediated by distinct but overlapping ~15 Hz beta and ~80 Hz gamma band large-scale oscillatory networks. The beta-network that included all four nodes was dominantly feedforward, similar to the propagation of peak cortical activity, implying its role in accumulating and maintaining relevant sensory information and mapping to action. The gamma-network activity, occurring in a recurrent loop linked SI, pIPS and dlPFC, likely carrying out attentional selection of task-relevant sensory signals. Behavioral measure of task performance was correlated with the network activity in both bands. In the study of epileptic seizures, we investigated high-frequency (\u3e 50 Hz) oscillatory network activity from intracranial EEG (IEEG) recordings of patients who were the candidates for epilepsy surgery. The traditional approach of identifying brain regions for epilepsy surgery usually referred as seizure onset zones (SOZs) has not always produced clarity on SOZs. Here, we investigated directed network activity in the frequency domain and found that the high frequency (\u3e80 Hz) network activities occur before the onset of any visible ictal activity, andcausal relationships involve the recording electrodes where clinically identifiable seizures later develop. These findings suggest that high-frequency network activities and their causal relationships can assist in precise delineation of SOZs for surgical resection

    A Quantitative Study of Infraslow intracranial EEG and Resting State fMRI Network Activities in Human Epilepsy

    Get PDF
    Epilepsy is one of the most common neurological diseases affecting over 50 million people worldwide. Approximately one-third of these patients are refractory to anti-epileptic drugs and surgical resection of epileptic focus remains their only hope for cure. Despite many diagnostic tools, the clear identification of a resectable epileptic focus is still a major bottleneck. This work presents a set of comprehensive quantitative analysis techniques for analyzing and synthesizing infraslow intracranial electroencephalography (iEEG) signals and resting state functional magnetic resonance imaging (rsfMRI) to quantify infra-slow (0.01- 0.1 Hz) network activities, localize seizure onset zones and determine pathological propagation pathways. Firstly, we examine the existence of a stable network from infra-slow to very high frequencies throughout multiple phases of focal epilepsy using quantitative methods based on spectral Granger causality and graph measures. We show that the strongest infra-slow iEEG (IsEEG) signal correlates highly with the location of the visible seizure focus, and also with that of the strongest high frequency EEG signal, in both the preictal and interictal phases of the epilepsy cycle. Secondly, we present a novel quantitative analysis technique to localize the seizure focus by seeding the focus locations from iEEG to rsfMRI. We show that the iEEG electrode contacts with the strongest infraslow iEEG signal correlates with the slow spontaneous blood-oxygen-level-dependent (BOLD) fluctuations in corresponding locations; and those voxels form a highly significant grouping when compared to others throughout the entire brain. This presents an exciting direction in refractory epilepsy to link an invasively recorded iEEG infra-slow network, from a few hypothesized cortical areas, to a non-invasive, whole brain fMRI network

    Seizure-onset mapping based on time-variant multivariate functional connectivity analysis of high-dimensional intracranial EEG : a Kalman filter approach

    Get PDF
    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (< 60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach

    Passive and active markers of cortical excitability in epilepsy

    Full text link
    Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice

    Phase lagging model of brain response to external stimuli - modeling of single action potential

    Full text link
    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.Comment: 19 page

    Multimodal image analysis of the human brain

    Get PDF
    Gedurende de laatste decennia heeft de snelle ontwikkeling van multi-modale en niet-invasieve hersenbeeldvorming technologieën een revolutie teweeg gebracht in de mogelijkheid om de structuur en functionaliteit van de hersens te bestuderen. Er is grote vooruitgang geboekt in het beoordelen van hersenschade door gebruik te maken van Magnetic Reconance Imaging (MRI), terwijl Elektroencefalografie (EEG) beschouwd wordt als de gouden standaard voor diagnose van neurologische afwijkingen. In deze thesis focussen we op de ontwikkeling van nieuwe technieken voor multi-modale beeldanalyse van het menselijke brein, waaronder MRI segmentatie en EEG bronlokalisatie. Hierdoor voegen we theorie en praktijk samen waarbij we focussen op twee medische applicaties: (1) automatische 3D MRI segmentatie van de volwassen hersens en (2) multi-modale EEG-MRI data analyse van de hersens van een pasgeborene met perinatale hersenschade. We besteden veel aandacht aan de verbetering en ontwikkeling van nieuwe methoden voor accurate en ruisrobuuste beeldsegmentatie, dewelke daarna succesvol gebruikt worden voor de segmentatie van hersens in MRI van zowel volwassen als pasgeborenen. Daarenboven ontwikkelden we een geïntegreerd multi-modaal methode voor de EEG bronlokalisatie in de hersenen van een pasgeborene. Deze lokalisatie wordt gebruikt voor de vergelijkende studie tussen een EEG aanval bij pasgeborenen en acute perinatale hersenletsels zichtbaar in MRI

    Fast and slow domino regimes in transient network dynamics

    Get PDF
    It is well known that the addition of noise to a multistable dynamical system can induce random transitions from one stable state to another. For low noise, the times between transitions have an exponential tail and Kramers' formula gives an expression for the mean escape time in the asymptotic limit. If a number of multistable systems are coupled into a network structure, a transition at one site may change the transition properties at other sites. We study the case of escape from a "quiescent" attractor to an "active" attractor in which transitions back can be ignored. There are qualitatively different regimes of transition, depending on coupling strength. For small coupling strengths the transition rates are simply modified but the transitions remain stochastic. For large coupling strengths transitions happen approximately in synchrony - we call this a "fast domino" regime. There is also an intermediate coupling regime some transitions happen inexorably but with a delay that may be arbitrarily long - we call this a "slow domino" regime. We characterise these regimes in the low noise limit in terms of bifurcations of the potential landscape of a coupled system. We demonstrate the effect of the coupling on the distribution of timings and (in general) the sequences of escapes of the system.Comment: 3 figure

    Incorporation of anisotropic conductivities in EEG source analysis

    Get PDF
    The electroencephalogram (EEG) is a measurement of brain activity over a period of time by placing electrodes at the scalp (surface EEG) or in the brain (depth EEG) and is used extensively in the clinical practice. In the past 20 years, EEG source analysis has been increasingly used as a tool in the diagnosis of neurological disorders (like epilepsy) and in the research of brain functionality. EEG source analysis estimates the origin of brain activity given the electrode potentials measured at the scalp. This involves solving an inverse problem where a forward solution, which depends on the source parameters, is fitted to the given set of electrode potentials. The forward solution are the electrode potentials caused by a source in a given head model. The head model is dependent on the geometry and the conductivity. Often an isotropic conductivity (i.e. the conductivity is equal in all directions) is used, although the skull and white matter have an anisotropic conductivity (i.e. the conductivity can differ depending on the direction the current flows). In this dissertation a way to incorporate the anisotropic conductivities is presented and the effect of not incorporating these anisotropic conductivities is investigated. Spherical head models are simple head models where an analytical solution to the forward problem exists. A small simulation study in a 5 shell spherical head model was performed to investigate the estimation error due to neglecting the anisotropic properties of skull and white matter. The results show that the errors in the dipole location can be larger than 15 mm, which is unacceptable for an accurate dipole estimation in the clinical practice. Therefore, anisotropic conductivities have to be included in the head model. However, these spherical head models are not representative for the human head. Realistic head models are usually made from magnetic resonance scans through segmentation and are a better approximation to the geometry of the human head. To solve the forward problem in these head models numerical methods are needed. In this dissertation we proposed a finite difference technique that can incorporate anisotropic conductivities. Moreover, by using the reciprocity theorem the forward calculation time during an dipole source estimation procedure can be significantly reduced. By comparing the analytical solution for the dipole estimation problem with the one using the numerical method, the anisotropic finite difference with reciprocity method (AFDRM) is validated. Therefore, a cubic grid is made on the 5 shell spherical head model. The electrode potentials are obtained in the spherical head model with anisotropic conductivities by solving the forward problem using the analytical solution. Using these electrode potentials the inverse problem was solved in the spherical head model using the AFDRM. In this way we can determine the location error due to using the numerical technique. We found that the incorporation of anisotropic conductivities results in a larger location error when the head models are fully isotropical conducting. Furthermore, the location error due to the numerical technique is smaller if the cubic grid is made finer. To minimize the errors due to the numerical technique, the cubic grid should be smaller than or equal to 1 mm. Once the numerical technique is validated, a realistic head model can now be constructed. As a cubic grid should be used of at most 1 mm, the use of segmented T1 magnetic resonance images is best suited the construction. The anisotropic conductivities of skull and white matter are added as follows: The anisotropic conductivity of the skull is derived by calculating the normal and tangential direction to the skull at each voxel. The conductivity in the tangential direction was set 10 times larger than the normal direction. The conductivity of the white matter was derived using diffusion weighted magnetic resonance imaging (DW-MRI), a technique that measures the diffusion of water in several directions. As diffusion is larger along the nerve fibers, it is assumed that the conductivity along the nerve fibers is larger than the perpendicular directions to the nerve bundle. From the diffusion along each direction, the conductivity can be derived using two approaches. A simplified approach takes the direction with the largest diffusion and sets the conductivity along that direction 9 times larger than the orthogonal direction. However, by calculating the fractional anisotropy, a well-known measure indicating the degree of anisotropy, we can appreciate that a fractional anisotropy of 0.8715 is an overestimation. In reality, the fractional anisotorpy is mostly smaller and variable throughout the white matter. A realistic approach was therefore presented, which states that the conductivity tensor is a scaling of the diffusion tensor. The volume constraint is used to determine the scaling factor. A comparison between the realistic approach and the simplified approach was made. The results showed that the location error was on average 4.0 mm with a maximum of 10 mm. The orientation error was found that the orientation could range up to 60 degrees. The large orientation error was located at regions where the anisotropic ratio was low using the realistic approach but was 9 using the simplified approach. Furthermore, as the DW-MRI can also be used to measure the anisotropic diffusion in a gray matter voxel, we can derive a conductivity tensor. After investigating the errors due to neglecting these anisotropic conductivities of the gray matter, we found that the location error was very small (average dipole location error: 2.8 mm). The orientation error was ranged up to 40 degrees, although the mean was 5.0 degrees. The large errors were mostly found at the regions that had a high anisotropic ratio in the anisotropic conducting gray matter. Mostly these effects were due to missegmentation or to partial volume effects near the boundary interfaces of the gray and white matter compartment. After the incorporation of the anisotropic conductivities in the realistic head model, simulation studies can be performed to investigate the dipole estimation errors when these anisotropic conductivities of the skull and brain tissues are not taken into account. This can be done by comparing the solution to the dipole estimation problem in a head model with anisotropic conductivities with the one in a head model, where all compartments are isotropic conducting. This way we determine the error when a simplified head model is used instead of a more realistic one. When the anisotropic conductivity of both the skull and white matter or the skull only was neglected, it was found that the location error between the original and the estimated dipole was on average, 10 mm (maximum: 25 mm). When the anisotropic conductivity of the brain tissue was neglected, the location error was much smaller (an average location error of 1.1 mm). It was found that the anisotropy of the skull acts as an extra shielding of the electrical activity as opposed to an isotropic skull. Moreover, we saw that if the dipole is close to a highly anisotropic region, the potential field is changed reasonable in the near vicinity of the location of the dipole. In reality EEG contains noise contributions. These noise contribution will interact with the systematical error by neglecting anisotropic conductivities. The question we wanted to solve was “Is it worthwhile to incorporate anisotropic conductivities, even if the EEG contains noise?” and “How much noise should the EEG contain so that incorporating anisotropic conductivities improves the accuracy of EEG source analysis?”. When considering the anisotropic conductivities of the skull and brain tissues and the skull only, the location error due to the noise and neglecting the anisotropic conductivities is larger then the location error due to noise only. When only neglecting the anisotropic conductivities of the brain tissues only, the location error due to noise is similar to the location error due to noise and neglecting the anisotropic conductivities. When more advanced MR techniques can be used a better model to construct the anisotropic conductivities of the soft brain tissues can be used, which could result in larger errors even in the presence of noise. However, this is subject to further investigation. This suggests that the anisotropic conductivities of the skull should be incorporated. The technique presented in the dissertation can be used to epileptic patients in the presurgical evaluation. In this procedure patients are evaluated by means of medical investigations to determine the cause of the epileptic seizures. Afterwards, a surgical procedure can be performed to render the patient seizure free. A data set from a patiënt was obtained from a database of the Reference Center of Refractory Epilepsy of the Department of Neurology and the Department of Radiology of the Ghent University Hospital (Ghent, Belgium). The patient was monitored with a video/EEG monitoring with scalp and with implanted depth electrodes. An MR image was taken from the patient with the implanted depth electrodes, therefore, we could pinpoint the hippocampus as the onset zone of the epileptic seizures. The patient underwent a resective surgery removing the hippocampus, which rendered the patient seizure free. As DW-MRI images were not available, the head model constructed in chapter 4 and 5 was used. A neuroradiologist aligned the hippocampus in the MR image from which the head model was constructed. A spike was picked from a dataset and was used to estimate the source in a head model where all compartments were isotropic conducting, on one hand, and where the skull and brain tissues were anisotropic conducting, on the other. It was found that using the anisotropic head model, the source was estimated closer to the segmented hippocampus than the isotropic head model. This example shows the possibilities of this technique and allows us to apply it in the clinical practice. Moreover, a thorough validation of the technique has yet to be performed. There is a lot of discussion in the clinical community whether the spikes and epileptical seizures originate from the same origin in the brain. This question can be solved by applying our technique in patient studies

    Source-sink connectivity: A novel interictal EEG marker of the epileptic brain network

    Get PDF
    Epilepsy affects over 60 million people worldwide. Epilepsy diagnosis depends on abnormalities in scalp electroencephalography (EEG) signals but their presence varies from 29-55%, resulting in a delayed diagnosis. Additionally, artifacts mimicking abnormalities and conditions imitating epileptic seizures contribute to a misdiagnosis rate of 30%. Antiepileptic drugs (AEDs) are the mainstay of epilepsy treatment, but around 30% of patients do not respond to AEDs. Surgical treatment is a hopeful alternative but outcomes depend on precise identification of the epileptogenic zone (EZ), the brain region(s) where seizures originate, and success rates range from 20-80%. Localization of the EZ requires visual inspection of intracranial EEG (iEEG) recordings during seizures which is costly and time-consuming and, in the end, clinicians ignore most of the data captured. Diagnosis and management of epilepsy rely on detecting sporadic EEG signatures. Thus, there is a great need to more quickly and accurately identify the underlying cause and location of seizures in the brain. We developed and tested the source-sink index (SSI) as an interictal (between seizures) EEG marker of epileptogenic activity. We hypothesized that seizures are suppressed when the EZ is inhibited by neighboring regions. We developed an algorithm that identifies two groups of nodes from the EEG network: those inhibiting their neighboring nodes ("sources") and the inhibited nodes themselves ("sinks"). Specifically, dynamical network models were estimated from EEG data and their connectivity properties revealed top sources and sinks in the network. We tested and validated a twofold application of SSI, as: i) an iEEG marker of the EZ, and ii) a scalp EEG marker of epilepsy. We found that SSI highly agreed with the annotated EZ in successful outcome patients but identified untreated regions in failure patients. Further, SSI outperformed high frequency oscillations, a frequently proposed interictal EZ marker, in predicting surgical outcomes. When used to predict diagnostic outcomes, SSI showed significant improvement over the gold standard's reported sensitivity and specificity. Our results suggest that SSI captures the characteristics of regions responsible for seizure initiation. As such, it is a promising marker of epileptogenicity that could significantly improve the speed and outcomes of epilepsy management and diagnosis
    corecore