123,312 research outputs found

    Source Coding When the Side Information May Be Delayed

    Full text link
    For memoryless sources, delayed side information at the decoder does not improve the rate-distortion function. However, this is not the case for more general sources with memory, as demonstrated by a number of works focusing on the special case of (delayed) feedforward. In this paper, a setting is studied in which the encoder is potentially uncertain about the delay with which measurements of the side information are acquired at the decoder. Assuming a hidden Markov model for the sources, at first, a single-letter characterization is given for the set-up where the side information delay is arbitrary and known at the encoder, and the reconstruction at the destination is required to be (near) lossless. Then, with delay equal to zero or one source symbol, a single-letter characterization is given of the rate-distortion region for the case where side information may be delayed or not, unbeknownst to the encoder. The characterization is further extended to allow for additional information to be sent when the side information is not delayed. Finally, examples for binary and Gaussian sources are provided.Comment: revised July 201

    On Two-Pair Two-Way Relay Channel with an Intermittently Available Relay

    Full text link
    When multiple users share the same resource for physical layer cooperation such as relay terminals in their vicinities, this shared resource may not be always available for every user, and it is critical for transmitting terminals to know whether other users have access to that common resource in order to better utilize it. Failing to learn this critical piece of information may cause severe issues in the design of such cooperative systems. In this paper, we address this problem by investigating a two-pair two-way relay channel with an intermittently available relay. In the model, each pair of users need to exchange their messages within their own pair via the shared relay. The shared relay, however, is only intermittently available for the users to access. The accessing activities of different pairs of users are governed by independent Bernoulli random processes. Our main contribution is the characterization of the capacity region to within a bounded gap in a symmetric setting, for both delayed and instantaneous state information at transmitters. An interesting observation is that the bottleneck for information flow is the quality of state information (delayed or instantaneous) available at the relay, not those at the end users. To the best of our knowledge, our work is the first result regarding how the shared intermittent relay should cooperate with multiple pairs of users in such a two-way cooperative network.Comment: extended version of ISIT 2015 pape

    A Novel Transmission Scheme for the KK-user Broadcast Channel with Delayed CSIT

    Full text link
    The state-dependent KK-user memoryless Broadcast Channel~(BC) with state feedback is investigated. We propose a novel transmission scheme and derive its corresponding achievable rate region, which, compared to some general schemes that deal with feedback, has the advantage of being relatively simple and thus is easy to evaluate. In particular, it is shown that the capacity region of the symmetric erasure BC with an arbitrary input alphabet size is achievable with the proposed scheme. For the fading Gaussian BC, we derive a symmetric achievable rate as a function of the signal-to-noise ratio~(SNR) and a small set of parameters. Besides achieving the optimal degrees of freedom at high SNR, the proposed scheme is shown, through numerical results, to outperform existing schemes from the literature in the finite SNR regime.Comment: 30 pages, 3 figures, submitted to IEEE Transactions on Wireless Communications (revised version

    Block-Fading Channels with Delayed CSIT at Finite Blocklength

    Get PDF
    In many wireless systems, the channel state information at the transmitter (CSIT) can not be learned until after a transmission has taken place and is thereby outdated. In this paper, we study the benefits of delayed CSIT on a block-fading channel at finite blocklength. First, the achievable rates of a family of codes that allows the number of codewords to expand during transmission, based on delayed CSIT, are characterized. A fixed-length and a variable-length characterization of the rates are provided using the dependency testing bound and the variable-length setting introduced by Polyanskiy et al. Next, a communication protocol based on codes with expandable message space is put forth, and numerically, it is shown that higher rates are achievable compared to coding strategies that do not benefit from delayed CSIT.Comment: Extended version of a paper submitted to ISIT'1

    Upper Bounds on the Capacities of Noncontrollable Finite-State Channels with/without Feedback

    Full text link
    Noncontrollable finite-state channels (FSCs) are FSCs in which the channel inputs have no influence on the channel states, i.e., the channel states evolve freely. Since single-letter formulae for the channel capacities are rarely available for general noncontrollable FSCs, computable bounds are usually utilized to numerically bound the capacities. In this paper, we take the delayed channel state as part of the channel input and then define the {\em directed information rate} from the new channel input (including the source and the delayed channel state) sequence to the channel output sequence. With this technique, we derive a series of upper bounds on the capacities of noncontrollable FSCs with/without feedback. These upper bounds can be achieved by conditional Markov sources and computed by solving an average reward per stage stochastic control problem (ARSCP) with a compact state space and a compact action space. By showing that the ARSCP has a uniformly continuous reward function, we transform the original ARSCP into a finite-state and finite-action ARSCP that can be solved by a value iteration method. Under a mild assumption, the value iteration algorithm is convergent and delivers a near-optimal stationary policy and a numerical upper bound.Comment: 15 pages, Two columns, 6 figures; appears in IEEE Transaction on Information Theor

    Robust streaming in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service

    Second-Order Coding Rates for Conditional Rate-Distortion

    Full text link
    This paper characterizes the second-order coding rates for lossy source coding with side information available at both the encoder and the decoder. We first provide non-asymptotic bounds for this problem and then specialize the non-asymptotic bounds for three different scenarios: discrete memoryless sources, Gaussian sources, and Markov sources. We obtain the second-order coding rates for these settings. It is interesting to observe that the second-order coding rate for Gaussian source coding with Gaussian side information available at both the encoder and the decoder is the same as that for Gaussian source coding without side information. Furthermore, regardless of the variance of the side information, the dispersion is 1/21/2 nats squared per source symbol.Comment: 20 pages, 2 figures, second-order coding rates, finite blocklength, network information theor
    corecore