20,523 research outputs found

    Animating the evolution of software

    Get PDF
    The use and development of open source software has increased significantly in the last decade. The high frequency of changes and releases across a distributed environment requires good project management tools in order to control the process adequately. However, even with these tools in place, the nature of the development and the fact that developers will often work on many other projects simultaneously, means that the developers are unlikely to have a clear picture of the current state of the project at any time. Furthermore, the poor documentation associated with many projects has a detrimental effect when encouraging new developers to contribute to the software. A typical version control repository contains a mine of information that is not always obvious and not easy to comprehend in its raw form. However, presenting this historical data in a suitable format by using software visualisation techniques allows the evolution of the software over a number of releases to be shown. This allows the changes that have been made to the software to be identified clearly, thus ensuring that the effect of those changes will also be emphasised. This then enables both managers and developers to gain a more detailed view of the current state of the project. The visualisation of evolving software introduces a number of new issues. This thesis investigates some of these issues in detail, and recommends a number of solutions in order to alleviate the problems that may otherwise arise. The solutions are then demonstrated in the definition of two new visualisations. These use historical data contained within version control repositories to show the evolution of the software at a number of levels of granularity. Additionally, animation is used as an integral part of both visualisations - not only to show the evolution by representing the progression of time, but also to highlight the changes that have occurred. Previously, the use of animation within software visualisation has been primarily restricted to small-scale, hand generated visualisations. However, this thesis shows the viability of using animation within software visualisation with automated visualisations on a large scale. In addition, evaluation of the visualisations has shown that they are suitable for showing the changes that have occurred in the software over a period of time, and subsequently how the software has evolved. These visualisations are therefore suitable for use by developers and managers involved with open source software. In addition, they also provide a basis for future research in evolutionary visualisations, software evolution and open source development

    Integrating a graph builder into python tutor

    Get PDF
    Analysing unknown source code to comprehend it is quite hard and expensive task. Therefore, the Program Comprehension (PC) subject has always been an area of interest as it helps to realize how a program works by identifying the code that implements each functionality. This means being able to map the problem domain with the program domain. PC is a complex area, but its importance for programmers is so high that many approaches and tools were proposed along the last two decades. Program Animation is one of those approaches requiring specialized techniques. For each programming language, there are already tools that enable us to execute a program step by step, visualize its execution path, observe the effect of each instruction on its data structures, and inspect the value of its variables at any point. In the present context, we sustain the idea that PC techniques and tools can also be of great value for students taking the first steps in programming using a specific language. To this end, we aim to improve Python Tutor, a well-known program visualization tool, with graph-based representations of source code such as Control Flow Graph (CFG), Data Flow Graph (DFG), Function Call Graph (FCG) and System Control Graph (SCG). This helps novice programmers to understand the source code analyzing not only the variable contents but also a set of automatically generated graph-based visualizations, that were not included in Python Tutor so far. This will allow the students to be focused on certain aspects of the program (depending on the graph), abstracting others such as details of its syntax.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Projects Scopes: UIDB/05757/2020 and UIDB/00319/2020.info:eu-repo/semantics/publishedVersio

    Using automated source code analysis for software evolution

    Get PDF
    Software maintenance is one of the most expensive and time-consuming phases in the software life-cycle. The size and complexity of commercial applications probably present the greatest difficulty that maintainers face when making changes to their applications. As a result of the corresponding loss of understanding, business knowledge encapsulated within the system becomes fragmented, and any changes made as a result of new business initiatives become difficult to implement and hence may mean a loss of business opportunities. This paper outlines an approach to regaining understanding of software which has been used in the Release project at Durham University. This approach involves determining the calling structure of a program in terms of a call-graph, and from this call-graph extracting a dominance tree. Various problems which have been encountered during the construction of tools to perform this task are described

    Novis: A notional machine implementation for teaching introductory programming

    Get PDF
    Comprehension of programming and programs is known to be a difficult task for many beginning students, with many computing courses showing significant drop out and failure rates. In this paper, we present a notional machine imple- mentation, Novis, to help with understanding of program- ming and its dynamics for beginning learners. The notional machine offers an abstraction of the physical machine de- signed for comprehension and learning purposes. Novis pro- vides a real-time visualisation of this notional machine, and is integrated into BlueJ

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF

    On the testability of WCAG 2.0 for beginners

    Get PDF
    Web accessibility for people with disabilities is a highly visible area of research in the field of ICT accessibility, including many policy activities across many countries. The commonly accepted guidelines for web accessibility (WCAG 1.0) were published in 1999 and have been extensively used by designers, evaluators and legislators. W3C-WAI published a new version of these guidelines (WCAG 2.0) in December 2008. One of the main goals of WCAG 2.0 was testability, that is, WCAG 2.0 should be either machine testable or reliably human testable. In this paper we present an educational experiment performed during an intensive web accessibility course. The goal of the experiment was to assess the testability of the 25 level-A success criteria of WCAG 2.0 by beginners. To do this, the students had to manually evaluate the accessibility of the same web page. The result was that only eight success criteria could be considered to be reliably human testable when evaluators were beginners. We also compare our experiment with a similar study published recently. Our work is not a conclusive experiment, but it does suggest some parts of WCAG 2.0 to which special attention should be paid when training accessibility evaluator
    • …
    corecore