109 research outputs found

    A Sociotechnical Systems Analysis of Building Information Modelling (STSaBIM) Implementation in Construction Organisations

    Get PDF
    The concept of BIM is nascent but evolving rapidly, thus, its deployment has become the latest shibboleth amongst both academics and practitioners in the construction sector in the recent couple of years. Due to construction clients buy-in of the BIM concept, the entire industry is encouraged to pursue a vision of changing work practices in line with the BIM ideas. Also, existing research recognises that the implementation of BIM affects all areas of the construction process from design of the building, through the organisation of projects, to the way in which the construction process is executed and how the finished product is maintained. The problem however is that, existing research in technology utilisation in general, and BIM literature in particular, has offered limited help to practitioners trying to implement BIM, for focusing predominantly, on technology-centric views. Not surprisingly therefore, the current BIM literature emphasises on topics such as capability maturity models and anticipated outcomes of BIM rollouts. Rarely does the extant literature offer practitioners a cohesive approach to BIM implementation. Such technology-centric views inevitably represent a serious barrier to utilising the inscribed capabilities of BIM. This research therefore is predicated on the need to strengthen BIM implementation theory through monitoring and analysing its implementation in practice. Thus, the focus of this thesis is to carry out a sociotechnical systems (STS) analysis of BIM implementation in construction organisations. The concept of STS accommodates the dualism of the inscribed functions of BIM technologies and the contextual issues in the organisations and allows for the analysis of their interactive combination in producing the anticipated effect from BIM appropriation. An interpretive research methodology is adopted to study practitioners through a change process, involving the implementation of BIM in their work contexts. The study is based on constructivist ontological interpretations of participants. The study adopts an abductive research approach which ensures a back-and-forth movement between research sites and the theoretical phenomenon, effectively comparing the empirical findings with the existing theories and to eventually generate a new theoretical understanding and knowledge regarding the phenomenon under investigation. A two-stage process is also formulated for the empirical data collection - comprising: 1) initial exploratory study to help establish the framework for analysing BIM implementation in the construction context; and 2) case studies approach to provide a context for formulating novel understanding and validation of theory regarding BIM implementation in construction organisations. The analysis and interpretation of the empirical work follows the qualitative content analysis technique to observe and reflect on the results. The findings have shown that BIM implementation demands a complete breakaway from the status quo. Contrary to the prevailing understanding of a top-down approach to BIM utilisation, the study revealed that different organisations with plethora of visions, expectations and skills combine with artefacts to form or transform BIM practices. The rollout and appropriation of BIM occurs when organisations shape sociotechnical systems of institutions, processes and technologies to support certain practices over others. The study also showed that BIM implementation endures in a causal chain of influences as different project organisations with their localised BIM ambitions and expectations combine to develop holistic BIM-enabled project visions. Thus, distributed responsibilities on holistic BIM protocols among the different levels of influences are instituted and enforced under binding contractual obligations. The study has illuminated the centrality of both the technical challenges and sociological factors in shaping BIM deployment in construction. It is also one of the few studies that have produced accounts of BIM deployment that is strongly mediated by the institutional contexts of construction organisations. However, it is acknowledged that the focus of the research on qualitative interpretive enquiry does not have the hard and fast view of generalising from specific cases to broader population/contexts. Thus, it is suggested that further quantitative studies, using much larger data sample of BIM-enabled construction organisations could provide an interesting point of comparison to the conclusions derived from the research findings

    Modeling and verification of web service composition based interorganizational workflows

    Get PDF
    Interorganisationale Workflows sind ArbeitsablĂ€ufe, welche die Grenzen einer Organisation verlassen und einen Rahmen fĂŒr Kooperationen der verschiedenen autonomen Organisationen zur VerfĂŒgung stellen. Ein wichtiger Punkt fĂŒr den Entwurf solcher Workflows ist die Balance zwischen Offenheit und Abgrenzung, wobei erstere fĂŒr Kooperationen und letztere die fĂŒr den Schutz von Know-how benötigt wird. Workflow Sichten stellen ein effizientes Werkzeug fĂŒr diesen Zweck zur VerfĂŒgung. Durch Offenlegung von bestimmten Teilen eines Prozesses, können Organisationen sowohl kooperieren als auch das Know-how schĂŒtzen. Diese Dissertation prĂ€sentiert nun eine Methode fĂŒr die korrekte Konstruktion von Workflow Sichten. Es wird angenommen, dass Organisationen Web Service orientierte Technologien zur Modellierung und Implementierung von interorganisationalen Workflows verwenden. Die Anwendung von Web Services bietet Organisationen viele Vorteile. Den eigentlichen Mehrwert von Web Services stellt aber die KompositionsfĂ€higkeit dar. VerfĂŒgbare Web Services können dadurch von anderen Choreographien und Orchestrationen (wieder-)verwendet werden. Die Notwendigkeit der Implementierung von Systemen von Null weg kann minimiert werden. Die zentralen Anforderungen sind einerseits eine Architektur mit adĂ€quatem Potential, andererseits die Verifikation der Korrektheit. Diese Dissertation prĂ€sentiert nun eine Architektur zur Modellierung von Web Service Composition basierten interorganisationalen Workflows, genannt föderierte Choreographien, die verglichen mit anderen Architekturen verschiedene Vorteile anbieten. DarĂŒber hinaus werden Algorithmen und Techniken zur Verifikation der strukturellen und temporalen Korrektheit vorgestellt. Strukturelle Korrektheit prĂŒft, ob die Strukturen der beteiligten Prozesse zusammenpassen. Temporale Korrektheit ĂŒberprĂŒft, ob ein interorganisationaler Workflow, der aus mehreren Choreographien und Orchestrationen besteht hinsichtlich der lokalen und globalen Bedingungen fehlerfrei ist. Mit Hilfe dieser Techniken kann die strukturelle und temporale KonformitĂ€t des Modells zur Designzeit ĂŒberprĂŒft werden. Falls das Modell nicht strukturell oder temporal konform ist, können nötige Änderungen durchgefĂŒhrt werden, sodass die korrekte AusfĂŒhrung zur Laufzeit garantiert werden kann. Die ÜberprĂŒfung der KonformitĂ€t zur Designzeit reduziert die Prozesskosten vor allem wegen den folgenden zwei GrĂŒnden: Erstens, die entdeckten Fehler zur Designzeit sind normalerweise billiger als jene, die zur Laufzeit entdeckt werden und zweitens, Fehlerbehandlungsmechanismen können verhindert werden, die wiederum Zusatzkosten verursachen. ZusĂ€tzlich zu der vorgestellten Architektur wird eine allgemeinere Architektur zusammen mit den passenden KonformitĂ€tsprĂŒfungsalgorithmen prĂ€sentiert. Der Ansatz ist Platform- und sprachunabhĂ€ngig und die Algorithmen sind verteilt.Interorganizational workflows are workflows that cross the boundaries of a single organization and provide a framework for cooperation of different autonomous organizations. An important issue when designing such workflows is the balance between the openness needed for cooperation and the privacy needed for protection of business know-how. Workflow views provide an efficient tool for this aim. By exposure of only selected parts of a process, organizations can both cooperate and protect their business logic. This dissertation presents a technique for a correct construction of workflow views. It is assumed that organizations and partners use web services and web service related technology to model and implement interorganizational workflows. Application of web services offers several advantages for organizations. The real surplus of web services is their capability of being composed to more complex systems. Available web services can be reused by other choreographies and orchestrations and the need for development of new systems from scratch can be minimized. The essential requirements are on the one hand an architecture with adequate capabilities and on the other hand, verification of correctness. This dissertation proposes an architecture for modeling web service composition based interorganizational workflows, called \emph{federated choreographies}, that provides several advantages compared to existing proposals. Moreover, algorithms and techniques for verification of structural and temporal correctness of interorganizational workflows are proposed. Structural conformance checks if the structures of the involved processes match. Temporal conformance checks if an interorganizational workflow composed of choreographies and orchestrations is temporally error-free with respect to local and global temporal constraints. The proposed algorithms can be applied for checking the structural and temporal conformance of the federated choreographies at design-time. If the model is not structurally or temporally conformant, necessary modifications can be done such that the correct execution of the flow at run-time can be guaranteed. The conformance checking at design time reduces the cost of process because of two reasons: first, errors detected at design time are normally cheaper than those detected at run time and second, exception handling mechanisms can be avoided which are, in turn, coupled with additional costs. In addition to the proposed architecture, a more general architecture together with the conformance checking algorithms and techniques for interorganizational workflows are presented. The presented approach is language and platform independent and algorithms work in a distributed manner

    Access control and service-oriented architectures

    Get PDF
    Access Control and Service-Oriented Architectures" investigates in which way logical access control can be achieved effectively, in particular in highly dynamic environments such as service-oriented architectures (SOA's). The author combines state-of-the-art best-practice and projects these onto the SOA. In doing so, he identifies strengths of current approaches, but also pinpoints weaknesses. These weaknesses are subsequently mitigated by introducing an innovative new framework called EFSOC. The framework is validated empirically and preliminary implementations are discussed.

    The Web Engineering Security (WES) methodology

    Get PDF
    The World Wide Web has had a significant impact on basic operational economical components in global information rich civilizations. This impact is forcing organizations to provide justification for security from a business case perspective and to focus on security from a web application development environment perspective. This increased focus on security was the basis of a business case discussion and led to the acquisition of empirical evidence gathered from a high level Web survey and more detailed industry surveys to analyse security in the Web application development environment. Along with this information, a collection of evidence from relevant literature was also gathered. Individual aspects of the data gathered in the previously mentioned activities contributed to the proposal of the Essential Elements (EE) and the Security Criteria for Web Application Development (SCWAD). The Essential Elements present the idea that there are essential, basic organizational elements that need to be identified, defined and addressed before examining security aspects of a Web Engineering Development process. The Security Criteria for Web Application Development identifies criteria that need to be addressed by a secure Web Engineering process. Both the EE and SCWAD are presented in detail along with relevant justification of these two elements to Web Engineering. SCWAD is utilized as a framework to evaluate the security of a representative selection of recognized software engineering processes used in Web Engineering application development. The software engineering processes appraised by SCWAD include: the Waterfall Model, the Unified Software Development Process (USD), Dynamic Systems Development Method (DSDM) and eXtreme Programming (XP). SCWAD is also used to assess existing security methodologies which are comprised of the Orion Strategy; Survivable / Viable IS approaches; Comprehensive Lightweight Application Security Process (CLASP) and Microsoft’s Trust Worthy Computing Security Development Lifecycle. The synthesis of information provided by both the EE and SCWAD were used to develop the Web Engineering Security (WES) methodology. WES is a proactive, flexible, process neutral security methodology with customizable components that is based on empirical evidence and used to explicitly integrate security throughout an organization’s chosen application development process. In order to evaluate the practical application of the EE, SCWAD and the WES methodology, two case studies were conducted during the course of this research. The first case study describes the application of both the EE and SCWAD to the Hunterian Museum and Art Gallery’s Online Photo Library (HOPL) Internet application project. The second case study presents the commercial implementation of the WES methodology within a Global Fortune 500 financial service sector organization. The assessment of the WES methodology within the organization consisted of an initial survey establishing current security practices, a follow-up survey after changes were implemented and an overall analysis of the security conditions assigned to projects throughout the life of the case study

    The Integrated Realization of Materials, Products and Associated Manufacturing Processes

    Get PDF
    Problem: A materials design revolution is underway in the recent past where the focus is to design (not select) the material microstructure and processing paths to achieve multiple property or performance requirements that are often in conflict. The advancements in computer simulations have resulted in the speeding up of the process of discovering new materials and has paved way for rapid assessment of process-structure-property-performance relationships of materials, products, and processes. This has led to the simulation-based design of material microstructure (microstructure-mediated design) to satisfy multiple property or performance goals of the product/process/system thereby replacing the classical material design and selection approaches. The foundational premise for this dissertation is that systems-based materials design techniques offer the potential for tailoring materials, their processing paths and the end products that employ these materials in an integrated fashion for challenging applications to satisfy conflicting product and process level property and performance requirements. The primary goal in this dissertation is to establish some of the scientific foundations and tools that are needed for the integrated realization of materials, products and manufacturing processes using simulation models that are typically incomplete, inaccurate and not of equal fidelity by managing the uncertainty associated. Accordingly, the interest in this dissertation lies in establishing a systems-based design architecture that includes system-level synthesis methods and tools that are required for the integrated design of complex materials, products and associated manufacturing processes starting from the end requirements. Hence the primary research question: What are the theoretical, mathematical and computational foundations needed for establishing a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system? Major challenges to be addressed here are: a) integration of models (material, process and product) to establish processing-structure-property-performance relationships, b) goal-oriented inverse design of material microstructures and processing paths to meet multiple conflicting performance/property requirements, c) robust concept exploration by managing uncertainty across process chains and d) systematic, domain-independent, modular, reconfigurable, reusable, computer interpretable, archivable, and multi-objective decision support in the early stages of design to different users. Approach: In order to address these challenges, the primary hypothesis in this dissertation is to establish the theoretical, mathematical and computational foundations for: 1) forward material, product and process workflows through systematic identification and integration of models to define the processing-structure-property-performance relationships; 2) a concept exploration framework supporting systematic formulation of design problems facilitating robust design exploration by bringing together robust design principles and multi-objective decision making protocols; 3) a generic, goal-oriented, inverse decision-based design method that uses 1) and 2) to facilitate the systems-based inverse design of material microstructures and processing paths to meet multiple product level performance/property requirements, thereby generating the problem-specific inverse decision workflow; and 4) integrating the workflows with a knowledge-based platform anchored in modeling decision-related knowledge facilitating capture, execution and reuse of the knowledge associated with 1), 2) and 3). This establishes a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system. Validation: The systems-based design architecture for the integrated realization of materials, products and associated manufacturing processes is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the design architecture is carried out using an industry driven problem namely the ‘Integrated Design of Steel (Material), Manufacturing Processes (Rolling and Cooling) and Hot Rolled Rods (Product) for Automotive Gears’. Specific sub-problems are formulated within this problem domain to address various research questions identified in this dissertation. Contributions: The contributions from the dissertation are categorized into new knowledge in four research domains: a) systematic model integration (vertical and horizontal) for integrated material and product workflows, b) goal-oriented, inverse decision support, c) robust concept exploration of process chains with multiple conflicting goals and d) knowledge-based decision support for rapid and robust design exploration in simulation-based integrated material, product and process design. The creation of new knowledge in this dissertation is associated with the development of a systems-based design architecture involving systematic function-based approach of formulating forward material workflows, a concept exploration framework for systematic design exploration, an inverse decision-based design method, and robust design metrics, all integrated with a knowledge-based platform for decision support. The theoretical, mathematical and computational foundations for the design architecture are proposed in this dissertation to facilitate rapid and robust exploration of the design and solution spaces to identify material microstructures and processing paths that satisfy conflicting property and performance for complex materials, products and processes by managing uncertainty

    Computational Verification of Security Requirements

    Get PDF

    Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments

    Get PDF
    The last couple of years have seen a fascinating evolution. While the early Web predominantly focused on human consumption of Web content, the widespread dissemination of social software and Web 2.0 technologies enabled new forms of collaborative content creation and problem solving. These new forms often utilize the principles of collective intelligence, a phenomenon that emerges from a group of people who either cooperate or compete with each other to create a result that is better or more intelligent than any individual result (Leimeister, 2010; Malone, Laubacher, & Dellarocas, 2010). Crowdsourcing has recently gained attention as one of the mechanisms that taps into the power of web-enabled collective intelligence (Howe, 2008). Brabham (2013) defines it as “an online, distributed problem-solving and production model that leverages the collective intelligence of online communities to serve specific organizational goals” (p. xix). Well-known examples of crowdsourcing platforms are Wikipedia, Amazon Mechanical Turk, or InnoCentive. Since the emergence of the term crowdsourcing in 2006, one popular misconception is that crowdsourcing relies largely on an amateur crowd rather than a pool of professional skilled workers (Brabham, 2013). As this might be true for low cognitive tasks, such as tagging a picture or rating a product, it is often not true for complex problem-solving and creative tasks, such as developing a new computer algorithm or creating an impressive product design. This raises the question of how to efficiently allocate an enterprise crowdsourcing task to appropriate members of the crowd. The sheer number of crowdsourcing tasks available at crowdsourcing intermediaries makes it especially challenging for workers to identify a task that matches their skills, experiences, and knowledge (Schall, 2012, p. 2). An explanation why the identification of appropriate expert knowledge plays a major role in crowdsourcing is partly given in Condorcet’s jury theorem (Sunstein, 2008, p. 25). The theorem states that if the average participant in a binary decision process is more likely to be correct than incorrect, then as the number of participants increases, the higher the probability is that the aggregate arrives at the right answer. When assuming that a suitable participant for a task is more likely to give a correct answer or solution than an improper one, efficient task recommendation becomes crucial to improve the aggregated results in crowdsourcing processes. Although some assumptions of the theorem, such as independent votes, binary decisions, and homogenous groups, are often unrealistic in practice, it illustrates the importance of an optimized task allocation and group formation that consider the task requirements and workers’ characteristics. Ontologies are widely applied to support semantic search and recommendation mechanisms (Middleton, De Roure, & Shadbolt, 2009). However, little research has investigated the potentials and the design of an ontology for the domain of enterprise crowdsourcing. The author of this thesis argues in favor of enhancing the automation and interoperability of an enterprise crowdsourcing environment with the introduction of a semantic vocabulary in form of an expressive but easy-to-use ontology. The deployment of a semantic vocabulary for enterprise crowdsourcing is likely to provide several technical and economic benefits for an enterprise. These benefits were the main drivers in efforts made during the research project of this thesis: 1. Task allocation: With the utilization of the semantics, requesters are able to form smaller task-specific crowds that perform tasks at lower costs and in less time than larger crowds. A standardized and controlled vocabulary allows requesters to communicate specific details about a crowdsourcing activity within a web page along with other existing displayed information. This has advantages for both contributors and requesters. On the one hand, contributors can easily and precisely search for tasks that correspond to their interests, experiences, skills, knowledge, and availability. On the other hand, crowdsourcing systems and intermediaries can proactively recommend crowdsourcing tasks to potential contributors (e.g., based on their social network profiles). 2. Quality control: Capturing and storing crowdsourcing data increases the overall transparency of the entire crowdsourcing activity and thus allows for a more sophisticated quality control. Requesters are able to check the consistency and receive appropriate support to verify and validate crowdsourcing data according to defined data types and value ranges. Before involving potential workers in a crowdsourcing task, requesters can also judge their trustworthiness based on previous accomplished tasks and hence improve the recruitment process. 3. Task definition: A standardized set of semantic entities supports the configuration of a crowdsourcing task. Requesters can evaluate historical crowdsourcing data to get suggestions for equal or similar crowdsourcing tasks, for example, which incentive or evaluation mechanism to use. They may also decrease their time to configure a crowdsourcing task by reusing well-established task specifications of a particular type. 4. Data integration and exchange: Applying a semantic vocabulary as a standard format for describing enterprise crowdsourcing activities allows not only crowdsourcing systems inside but also crowdsourcing intermediaries outside the company to extract crowdsourcing data from other business applications, such as project management, enterprise resource planning, or social software, and use it for further processing without retyping and copying the data. Additionally, enterprise or web search engines may exploit the structured data and provide enhanced search, browsing, and navigation capabilities, for example, clustering similar crowdsourcing tasks according to the required qualifications or the offered incentives.:Summary: Hetmank, L. (2014). Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Summary). Article 1: Hetmank, L. (2013). Components and Functions of Crowdsourcing Systems – A Systematic Literature Review. In 11th International Conference on Wirtschaftsinformatik (WI). Leipzig. Article 2: Hetmank, L. (2014). A Synopsis of Enterprise Crowdsourcing Literature. In 22nd European Conference on Information Systems (ECIS). Tel Aviv. Article 3: Hetmank, L. (2013). Towards a Semantic Standard for Enterprise Crowdsourcing – A Scenario-based Evaluation of a Conceptual Prototype. In 21st European Conference on Information Systems (ECIS). Utrecht. Article 4: Hetmank, L. (2014). Developing an Ontology for Enterprise Crowdsourcing. In Multikonferenz Wirtschaftsinformatik (MKWI). Paderborn. Article 5: Hetmank, L. (2014). An Ontology for Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Technical Report). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155187

    Public Administration in Germany

    Get PDF
    This open access book presents a topical, comprehensive and differentiated analysis of Germany’s public administration and reforms. It provides an overview on key elements of German public administration at the federal, LĂ€nder and local levels of government as well as on current reform activities of the public sector. It examines the key institutional features of German public administration; the changing relationships between public administration, society and the private sector; the administrative reforms at different levels of the federal system and numerous sectors; and new challenges and modernization approaches like digitalization, Open Government and Better Regulation. Each chapter offers a combination of descriptive information and problem-oriented analysis, presenting key topical issues in Germany which are relevant to an international readership
    • 

    corecore