13 research outputs found

    Introduction to Cirquent Calculus and Abstract Resource Semantics

    Full text link
    This paper introduces a refinement of the sequent calculus approach called cirquent calculus. While in Gentzen-style proof trees sibling (or cousin, etc.) sequents are disjoint sequences of formulas, in cirquent calculus they are permitted to share elements. Explicitly allowing or disallowing shared resources and thus taking to a more subtle level the resource-awareness intuitions underlying substructural logics, cirquent calculus offers much greater flexibility and power than sequent calculus does. A need for substantially new deductive tools came with the birth of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) - the semantically constructed formal theory of computational resources, which has stubbornly resisted any axiomatization attempts within the framework of traditional syntactic approaches. Cirquent calculus breaks the ice. Removing contraction from the full collection of its rules yields a sound and complete system for the basic fragment CL5 of computability logic. Doing the same in sequent calculus, on the other hand, throws out the baby with the bath water, resulting in the strictly weaker affine logic. An implied claim of computability logic is that it is CL5 rather than affine logic that adequately materializes the resource philosophy traditionally associated with the latter. To strengthen this claim, the paper further introduces an abstract resource semantics and shows the soundness and completeness of CL5 with respect to it.Comment: To appear in Journal of Logic and Computatio

    The Computational Complexity of Propositional Cirquent Calculus

    Full text link
    Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent calculus. The advent of cirquent calculus arose from the need for a deductive system with a more explicit ability to reason about resources. Unlike the more traditional proof-theoretic approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus is based on circuit-style structures called cirquents, in which different "peer" (sibling, cousin, etc.) substructures may share components. It is this resource sharing mechanism to which cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus has been paired with an abstract resource semantics. This semantics allows for reasoning about the interaction between a resource provider and a resource user, where resources are understood in the their most general and intuitive sense. Interpreting resources in a more restricted computational sense has made cirquent calculus instrumental in axiomatizing various fundamental fragments of Computability Logic, a formal theory of (interactive) computability. The so-called "classical" rules of cirquent calculus, in the absence of the particularly troublesome contraction rule, produce a sound and complete system CL5 for Computability Logic. In this paper, we investigate the computational complexity of CL5, showing it is Σ2p\Sigma_2^p-complete. We also show that CL5 without the duplication rule has polynomial size proofs and is NP-complete

    The taming of recurrences in computability logic through cirquent calculus, Part I

    Full text link
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html). The logical vocabulary of the system consists of negation, parallel conjunction, parallel disjunction, branching recurrence, and branching corecurrence. The article is published in two parts, with (the present) Part I containing preliminaries and a soundness proof, and (the forthcoming) Part II containing a completeness proof
    corecore