1,234 research outputs found

    Investigating computational models of perceptual attack time

    Get PDF
    The perceptual attack time (PAT) is the compensation for differing attack components of sounds, in the case of seeking a perceptually isochronous presentation of sounds. It has applications in scheduling and is related to, but not necessarily the same as, the moment of perceptual onset. This paper describes a computational investigation of PAT over a set of 25 synthesised stimuli, and a larger database of 100 sounds equally divided into synthesised and ecological. Ground truth PATs for modeling were obtained by the alternating presentation paradigm, where subjects adjusted the relative start time of a reference click and the sound to be judged. Whilst fitting experimental data from the 25 sound set was plausible, difficulties with existing models were found in the case of the larger test set. A pragmatic solution was obtained using a neural net architecture. In general, learnt schema of sound classification may be implicated in resolving the multiple detection cues evoked by complex sounds

    Plug-in to fear: game biosensors and negative physiological responses to music

    Get PDF
    The games industry is beginning to embark on an ambitious journey into the world of biometric gaming in search of more exciting and immersive gaming experiences. Whether or not biometric game technologies hold the key to unlock the “ultimate gaming experience” hinges not only on technological advancements alone but also on the game industry’s understanding of physiological responses to stimuli of different kinds, and its ability to interpret physiological data in terms of indicative meaning. With reference to horror genre games and music in particular, this article reviews some of the scientific literature relating to specific physiological responses induced by “fearful” or “unpleasant” musical stimuli, and considers some of the challenges facing the games industry in its quest for the ultimate “plugged-in” experience

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≀ 4 nV (if at this “≀ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≀ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Hybrid Multiresolution Analysis Of ‘Punch’ In Musical Signals

    Get PDF
    This paper presents a hybrid multi-resolution technique for the extraction and measurement of attributes contained within a musical signal. Decomposing music into simpler percussive, harmonic and noise components is useful when detailed extraction of signal attributes is required. The key parameter of interest in this paper is that of punch. A methodology is explored that decomposes the musical signal using a critically sampled constant-Q filterbank of quadrature mirror filters (QMF) before adaptive windowed short term Fourier transforms (STFT). The proposed hybrid method offers accuracy in both the time and frequency domains. Following the decomposition transform process, attributes are analyzed. It is shown that analysis of these components may yield parameters that would be of use in both mixing/mastering and also audio transcription and retrieval
    • 

    corecore