4,914 research outputs found

    Recording and Analysis of Head Movements, Interaural Level and Time Differences in Rooms and Real-World Listening Scenarios

    Get PDF
    The science of how we use interaural differences to localise sounds has been studied for over a century and in many ways is well understood. But in many of these psychophysical experiments listeners are required to keep their head still, as head movements cause changes in interaural level and time differences (ILD and ITD respectively). But a fixed head is unrealistic. Here we report an analysis of the actual ILDs and ITDs that occur as people naturally move and relate them to gyroscope measurements of the actual motion. We used recordings of binaural signals in a number of rooms and listening scenarios (home, office, busy street etc). The listener's head movements were also recorded in synchrony with the audio, using a micro-electromechanical gyroscope. We calculated the instantaneous ILD and ITDs and analysed them over time and frequency, comparing them with measurements of head movements. The results showed that instantaneous ITDs were widely distributed across time and frequency in some multi-source environments while ILDs were less widely distributed. The type of listening environment affected head motion. These findings suggest a complex interaction between interaural cues, egocentric head movement and the identification of sound sources in real-world listening situations

    Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics

    Get PDF
    In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neuromorphic Auditory Sensor was integrated within the iCub robotic platform, being the first time that an event-based cochlea is used in a humanoid robot. Then, the conclusions obtained are presented and new features and improvements are proposed for future works.En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimiento de las arquitecturas de procesamiento de audio neuromórfico en tiempo real propuestas. Se utilizó un generador central de patrones guiado por audio para controlar un robot hexápodo en tiempo real utilizando redes neuronales pulsantes en SpiNNaker. A continuación, se implementó una aplicación de integración sensorial que combina la localización de fuentes de sonido y la evitación de obstáculos para la navegación de robots autónomos. Por último, se integró el Sensor Auditivo Neuromórfico dentro de la plataforma robótica iCub, siendo la primera vez que se utiliza una cóclea basada en eventos en un robot humanoide. Por último, en este trabajo se presentan las conclusiones obtenidas y se proponen nuevas funcionalidades y mejoras para futuros trabajos

    Active Audition for Robots using Parameter-Less Self-Organising Maps

    Get PDF
    How can a robot become aware of its surroundings? How does it create its own subjective, inner representation of the real world, so that relationships in the one are reflected in the other? It is well known that structures analogous to Self-Organising Maps (SOM) are involved with this task in animals, and this thesis undertakes to explore if and how a similar approach can be success- fully applied in robotics. In order to study the environment-to-abstraction mapping with a minimum of guidance from directed learning and built-in design assumptions, this thesis examines the active audition task in which a system must determine the direction of a sound source and orient towards it, both in horizontal and vertical direction. Previous explanations of directional hearing in animals, and the implementation of directional hearing algorithms in robots have tended to focus on the two best known directional clues; the intensity and time differences. This thesis hypothesises that it is advantageous to use a synergy of a wider range of metrics, namely the phase and relative intensity difference. A solution to the active audition problem is proposed based on the Parameter- Less Self-Organising Map (PLSOM), a new algorithm also introduced in this thesis. The PLSOM is used to extract patterns from a high-dimensional input space to a low-dimensional output space. In this application the output space is mapped to the correct motor command for turning towards the source and focusing attention on the selected source by filtering unwanted noise. The dimension-reducing capability of the PLSOM enables the use of more than just two directional clues for computation of the direction. This thesis presents the new PLSOM algorithm for SOM training and quantifies its performance relative to the ordinary SOM algorithm. The mathematical correctness of the PLSOM is demonstrated and the properties and some applications of this new algorithm are examined, notably in automatically modelling a robot's surroundings in a functional form: Inverse Kinematics (IK). The IK problem is related in principle to the active audition problem - functional rather than abstract representation of reality - but raises some new questions of how to use this internal representation in planning and execution of movements. The PLSOM is also applied to classification of high-dimensional data and model-free chaotic time series prediction. A variant of Reinforcement Learning based on Q-Learning is devised and tested. This variant solves some problems related to stochastic reward functions. A mathematical proof of correct state-action pairing is devised

    High performance 3D sound localization for surveillance applications

    Full text link
    One of the key features of the human auditory system, is its nearly constant omni-directional sensitivity, e.g., the system reacts to alerting signals coming from a direction away from the sight of focused visual attention. In many surveillance situations where visual attention completely fails since the robot cameras have no direct line of sight with the sound sources, the ability to estimate the direction of the sources of danger relying on sound becomes extremely important. We present in this paper a novel method for sound localization in azimuth and elevation based on a humanoid head. The method was tested in simulations as well as in a real reverberant environment. Compared to state-of-the-art localization techniques the method is able to localize with high accuracy 3D sound sources even in the presence of reflections and high distortion

    Review of Anthropomorphic Head Stabilisation and Verticality Estimation in Robots

    Get PDF
    International audienceIn many walking, running, flying, and swimming animals, including mammals, reptiles, and birds, the vestibular system plays a central role for verticality estimation and is often associated with a head sta-bilisation (in rotation) behaviour. Head stabilisation, in turn, subserves gaze stabilisation, postural control, visual-vestibular information fusion and spatial awareness via the active establishment of a quasi-inertial frame of reference. Head stabilisation helps animals to cope with the computational consequences of angular movements that complicate the reliable estimation of the vertical direction. We suggest that this strategy could also benefit free-moving robotic systems, such as locomoting humanoid robots, which are typically equipped with inertial measurements units. Free-moving robotic systems could gain the full benefits of inertial measurements if the measurement units are placed on independently orientable platforms, such as a human-like heads. We illustrate these benefits by analysing recent humanoid robots design and control approaches
    corecore