24 research outputs found

    Signal fingerprinting and machine learning framework for UAV detection and identification.

    Get PDF
    Advancement in technology has led to creative and innovative inventions. One such invention includes unmanned aerial vehicles (UAVs). UAVs (also known as drones) are now an intrinsic part of our society because their application is becoming ubiquitous in every industry ranging from transportation and logistics to environmental monitoring among others. With the numerous benign applications of UAVs, their emergence has added a new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a UAV. For this reason, nefarious actors can take advantage of these aircraft to intrude into restricted or private areas. A UAV detection and identification system is one of the ways of detecting and identifying the presence of a UAV in an area. UAV detection and identification systems employ different sensing techniques such as radio frequency (RF) signals, video, sounds, and thermal imaging for detecting an intruding UAV. Because of the passive nature (stealth) of RF sensing techniques, the ability to exploit RF sensing for identification of UAV flight mode (i.e., flying, hovering, videoing, etc.), and the capability to detect a UAV at beyond visual line-of-sight (BVLOS) or marginal line-of-sight makes RF sensing techniques promising for UAV detection and identification. More so, there is constant communication between a UAV and its ground station (i.e., flight controller). The RF signals emitting from a UAV or UAV flight controller can be exploited for UAV detection and identification. Hence, in this work, an RF-based UAV detection and identification system is proposed and investigated. In RF signal fingerprinting research, the transient and steady state of the RF signals can be used to extract a unique signature. The first part of this work is to use two different wavelet analytic transforms (i.e., continuous wavelet transform and wavelet scattering transform) to investigate and analyze the characteristics or impacts of using either state for UAV detection and identification. Coefficient-based and image-based signatures are proposed for each of the wavelet analysis transforms to detect and identify a UAV. One of the challenges of using RF sensing is that a UAV\u27s communication links operate at the industrial, scientific, and medical (ISM) band. Several devices such as Bluetooth and WiFi operate at the ISM band as well, so discriminating UAVs from other ISM devices is not a trivial task. A semi-supervised anomaly detection approach is explored and proposed in this research to differentiate UAVs from Bluetooth and WiFi devices. Both time-frequency analytical approaches and unsupervised deep neural network techniques (i.e., denoising autoencoder) are used differently for feature extraction. Finally, a hierarchical classification framework for UAV identification is proposed for the identification of the type of unmanned aerial system signal (UAV or UAV controller signal), the UAV model, and the operational mode of the UAV. This is a shift from a flat classification approach. The hierarchical learning approach provides a level-by-level classification that can be useful for identifying an intruding UAV. The proposed frameworks described here can be extended to the detection of rogue RF devices in an environment

    Compressed Sensing Data with Performing Audio Signal Reconstruction for the Intelligent Classification of Chronic Respiratory Diseases

    Get PDF
    Chronic obstructive pulmonary disease (COPD) concerns the serious decline of human lung functions. These have emerged as one of the most concerning health conditions over the last two decades, after cancer around the world. The early diagnosis of COPD, particularly of lung function degradation, together with monitoring the condition by physicians, and predicting the likelihood of exacerbation events in individual patients, remains an important challenge to overcome. The requirements for achieving scalable deployments of data-driven methods using artificial intelligence for meeting such a challenge in modern COPD healthcare have become of paramount and critical importance. In this study, we have established the experimental foundations for acquiring and indeed generating biomedical observation data, for good performance signal analysis and machine learning that will lead us to the intelligent diagnosis and monitoring of COPD conditions for individual patients. Further, we investigated on the multi-resolution analysis and compression of lung audio signals, while we performed their machine classification under two distinct experiments. These respectively refer to conditions involving (1) “Healthy” or “COPD” and (2) “Healthy”, “COPD”, or “Pneumonia” classes. Signal reconstruction with the extracted features for machine learning and testing was also performed for securing the integrity of the original audio recordings. These showed high levels of accuracy together with the performances of the selected machine learning-based classifiers using diverse metrics. Our study shows promising levels of accuracy in classifying Healthy and COPD and also Healthy, COPD, and Pneumonia conditions. Further work in this study will be imminently extended to new experiments using multi-modal sensing hardware and data fusion techniques for the development of the next generation diagnosis systems for COPD healthcare of the future

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Contributions to the study of Austism Spectrum Brain conectivity

    Get PDF
    164 p.Autism Spectrum Disorder (ASD) is a largely prevalent neurodevelopmental condition with a big social and economical impact affecting the entire life of families. There is an intense search for biomarkers that can be assessed as early as possible in order to initiate treatment and preparation of the family to deal with the challenges imposed by the condition. Brain imaging biomarkers have special interest. Specifically, functional connectivity data extracted from resting state functional magnetic resonance imaging (rs-fMRI) should allow to detect brain connectivity alterations. Machine learning pipelines encompass the estimation of the functional connectivity matrix from brain parcellations, feature extraction and building classification models for ASD prediction. The works reported in the literature are very heterogeneous from the computational and methodological point of view. In this Thesis we carry out a comprehensive computational exploration of the impact of the choices involved while building these machine learning pipelines

    Building appliances energy performance assessment

    Get PDF
    Trabalho de Projeto de Mestrado, Informática, 2021, Universidade de Lisboa, Faculdade de CiênciasO consumo de energia tem vindo a crescer na União Europeia todos os anos, sendo de prever que, a curto prazo, se torne insustentável. No sentido de prevenir este cenário, a Comissão Europeia decidiu definir uma Estratégia Energética para a União Europeia, destacando dois objetivos: aumentar a eficiência energética e promover a descarbonização. Atualmente, cerca de 72% dos edifícios existentes na União Europeia não são energeticamente eficientes. Este problema motivou-nos à pesquisa e criação de soluções que permitam uma melhor avaliação do consumo energético por dispositivos elétricos em edifícios residenciais. Neste contexto, o trabalho desenvolvido nesta tese consiste no desenho de uma solução de monitorização remota que recolhe informações de consumo energético recorrendo a técnicas de intrusive load monitoring, onde cada dispositivo elétrico individual é continuamente monitorizado quanto ao seu consumo energético. Esta abordagem permite compreender o consumo de energia, em tempo real e no dia-a-dia. Este conhecimento oferece-nos a capacidade de avaliar as diferenças existentes entre as medições laboratoriais (abordagem utilizada no sistema de rotulagem de equipamentos elétricos de acordo com a sua eficiência energética) e os consumos domésticos estimados. Para tal, nesta tese exploram-se abordagens de machine learning que pretendem descrever padrões de consumo, bem como reconhecer marcas, modelos e que funções os dispositivos elétricos estarão a executar. O principal objetivo deste trabalho é desenhar e implementar um protótipo de uma solução de IoT flexível e de baixo custo para avaliar equipamentos elétricos. Será utilizado um conjunto de sensores que recolherá dados relacionados com o consumo de energia e os entrega à plataforma SATO para serem posteriormente processados. O sistema será usado para monitorar aparelhos comumente encontrados em residências. Além disso, o sistema terá a capacidade de monitorizar o consumo de água de aparelhos que necessitem de abastecimento de água, como máquinas de lavar e de lavar louça. Os dados recolhidos serão usados para classificação dos aparelhos e modos de operação dos mesmos, em tempo real, permitindo fornecer relatórios sobre o consumo energético e modo de uso dos aparelhos, com grande grau de detalhe. Os relatórios podem incluir o uso de energia por vários ciclos de operação. Por exemplo, um aparelho pode executar vários ciclos de operação, como uma máquina de lavar que consume diferentes quantidades de energia elétrica e água consoante o modo de operação escolhido pelo utilizador. Toda a informação recolhida pode ser posteriormente utilizada em novos serviços de recomendação que ajudaram os utilizadores a definir melhor as configurações adequadas a um determinado dispositivo, minimizando o consumo energético e melhorando a sua eficiência. Adicionalmente toda esta informação pode ser utilizada para o diagnóstico de avarias e/ou manutenção preventiva. Em termos de proposta, o trabalho desenvolvido nesta tese tem as seguintes contribuições: Sistema de monitorização remota: o sistema de monitorização desenhado e implementado nesta tese avança o estado da arte dos sistemas de monitorização propostos pela literatura devido ao facto de incluir uma lista aprimorada de sensores que podem fornecer mais informações sobre os aparelhos, como o consumo de água da máquina de lavar. Além disso, é altamente flexível e pode ser implementado sem esforço em dispositivos novos ou antigos para monitorização de consumo de recursos. Conjunto de dados de consumo de energia de eletrodomésticos: Os dados recolhidos podem ser usados para futura investigação científica sobre o consumo de consumo de energia, padrões de uso de energia pelos eletrodomésticos e classificação dos mesmos. Abordagem de computação na borda (Edge Computing): O sistema de monitorização proposto explora o paradigma de computação na borda, onde parte da computação de preparação de dados é executada na borda, libertando recursos da nuvem para cálculos essenciais e que necessitem de mais poder computacional. Classificação precisa de dispositivos em tempo real: Coma proposta desenhada nesta tese, podemos classificar os dispositivos com alta precisão, usando os dados recolhidos pelo sistema de monitorização desenvolvido na tese. A abordagem proposta consegue classificar os dispositivos, que são monitorizados, com baixas taxas de falsos positivos. Para fácil compreensão do trabalho desenvolvido nesta tese, de seguida descreve-se a organização do documento. O Capítulo 1 apresenta o problema do consumo de energia na União Europeia e discute o aumento do consumo da mesma. O capítulo apresenta também os principais objetivos e contribuições do trabalho. No Capítulo 2 revê-se o trabalho relacionado em termos de sistema de monitorização remota, que inclui sensores, microcontroladores, processamento e filtragem de sinal. Por fim, este capítulo revê os trabalhos existentes na literatura relacionados com o problema de classificação de dispositivos usando abordagens de machine learning. No Capítulo 3 discutem-se os requisitos do sistema e o projeto de arquitetura conceitual do sistema. Neste capítulo é proposta uma solução de hardware, bem como, o software e firmware necessários à sua operação. Os algoritmos de machine learning necessários à classificação são também discutidos, em termos de configurações necessárias e adequadas ao problema que queremos resolver nesta tese. O Capítulo 4 representa a implementação de um protótipo que servirá de prova de conceito dos mecanismos discutidos no Capítulo 3. Neste capítulo discute-se também a forma de integração do protótipo na plataforma SATO. Com base na implementação feita, no Capítulo 5 especificam-se um conjunto de testes funcionais que permitem avaliar o desempenho da solução proposta e discutem-se os resultados obtidos a partir desses testes. Por fim, o Capítulo 6 apresenta as conclusões e o trabalho futuro que poderá ser desenvolvido partindo da solução atual.Energy consumption is daily growing in European Union (EU). One day it will become hardly sustainable. For this not to happen European Commission decided to implement a European Union Strategy, emphasizing two objectives: increasing energy efficiency and decarbonization. About 72% of all buildings in the EU are not adapted to be energy efficient. This problem encourages us to create solutions that would help assess the energy consumption of appliances at residential houses. In this thesis, we proposed a system that collects data using an intrusive load monitoring approach, where each appliance will have a dedicated monitoring rig to collect the energy consumption data. The proposed solution will help us understand the real-life consumption of each device being monitored and compare the laboratory measurements observed versus domestic consumption estimated by the energy consumption based on the EU energy efficiency labelling system. The system proposed detects device consumption patterns and recognize its brand, model and what actions that appliance is executing, e.g., program of washing in a washing machine. To achieve our goal, we designed a hardware solution capable of collecting sensor data, filtering and send it to a cloud platform (the SATO platform). Additionally, in the cloud, we have a Machine Learning solution that deals with the data and recognizes the appliance and its operation modes. This recognition allows drawing a device/settings profile, which can detect faults and create a recommendation service that helps users define the better settings for a specific appliance, minimizing energy consumption and improving efficiency. Finally, we examine our prototype approach of the system implemented for targeted objectives in this project report. The document describes the experiments that we did and the final results. Our results show that we can identify the appliance and some of its operation modes. The proposed approach must be improved to make the identification of all operation modes. However, the current version of the system shows exciting results. It can be used to support the design of a new labelling system where daily operation measures can be used to support the new classification system. This way, we have an approach that allows improving the energy consumption, making builds more efficient

    The Affine Uncertainty Principle, Associated Frames and Applications in Signal Processing

    Get PDF
    Uncertainty relations play a prominent role in signal processing, stating that a signal can not be simultaneously concentrated in the two related domains of the corresponding phase space. In particular, a new uncertainty principle for the affine group, which is directly related to the wavelet transform has lead to a new minimizing waveform. In this thesis, a frame construction is proposed which leads to approximately tight frames based on this minimizing waveform. Frame properties such as the diagonality of the frame operator as well as lower and upper frame bounds are analyzed. Additionally, three applications of such frame constructions are introduced: inpainting of missing audio data, detection of neuronal spikes in extracellular recorded data and peak detection in MALDI imaging data

    Apprentissage profond pour l'aide à la détection d'anomalies dans l'industrie 4.0

    Get PDF
    L’industrie 4.0 (I4.0) correspond à une nouvelle façon de planifier, d’organiser, et d’optimiser les systèmes de production. Par conséquent, l’exploitation croissante de ces systèmes grâce à la présence de nombreux objets connectés, et la transformation digitale offrent de nouvelles opportunités pour rendre les usines intelligentes et faire du smart manufacturing. Cependant, ces technologies se heurtent à de nombre défis. Une façon de leurs d’appréhender consiste à automatiser les processus. Cela permet d’augmenter la disponibilité, la rentabilité, l’efficacité et de l’usine. Cette thèse porte donc sur l’automatisation de l’I4.0 via le développement des outils d’aide à la décision basés sur des modèles d’IA guidés par les données et par la physique. Au-delà des aspects théoriques, la contribution et l’originalité de notre étude consistent à implémenter des modèles hybrides, explicable et généralisables pour la Maintenance Prédictive (PdM). Pour ce motif, nous avons développé deux approches pour expliquer les modèles : En extrayant les connaissances locales et globales des processus d’apprentissage pour mettre en lumière les règles de prise de décision via la technique l’intelligence artificielle explicable (XAI) et en introduisant des connaissances ou des lois physiques pour informer ou guider le modèle. À cette fin, notre étude se concentrera sur trois principaux points : Premièrement, nous présenterons un état de l’art des techniques de détection d’anomalies et de PdM4.0. Nous exploiterons l’analyse bibliométrique pour extraire et analyser des informations pertinentes provenant de la base de données Web of Science. Ces analyses fournissent des lignes directrices utiles pouvant aider les chercheurs et les praticiens à comprendre les principaux défis et les questions scientifiques les plus pertinentes liées à l’IA et la PdM. Deuxièmement, nous avons développé deux Framework qui sont basés sur des réseaux de neurones profonds (DNN). Le premier est formé de deux modules à savoir un DNN et un Deep SHapley Additive exPlanations (DeepSHAP). Le module DNN est utilisé pour résoudre les tâches de classification multi-classes déséquilibrées des états du système hydraulique. Malgré leurs performances, certaines questions subsistent quant à la fiabilité et la transparence des DNNs en tant que modèle à "boîte noire". Pour répondre à cette question, nous avons développé un second module nommé DeepSHAP. Ce dernier montrant l’importance et la contribution de chaque variable dans la prise de décision de l’algorithme. En outre, elle favorise la compréhension du processus et guide les humains à mieux comprendre, interpréter et faire confiance aux modèles d’IA. Le deuxième Framework hybride est connu sous le nom de Physical-Informed Deep Neural Networks (PINN). Ce modèle est utilisé pour prédire les états du processus de soudage par friction malaxage. Le PINN consiste à introduire des connaissances explicites ou des contraintes physiques dans l’algorithme d’apprentissage. Cette contrainte fournit une meilleure connaissance et oblige le modèle à suivre la topologie du processus. Une fois formés, les PINNs peuvent remplacer les simulations numériques qui demandent beaucoup de temps de calcul. En résumé, ce travail ouvre des perspectives nouvelles et prometteuses domaine de l’explicabilité des modèles d’AI appliqués aux problématiques de PdM 4.0. En particulier, l’exploitation de ces Framework contribuent à une connaissance plus précise du système

    Towards Multiclass Damage Detection and Localization using Limited Vibration Measurements

    Get PDF
    Traditional vibration-based damage detection methods provide structural health information based on their measured data (i.e., acceleration and displacement response). Over the last few decades, various model-based and time-frequency methods have shown great promises for damage identification and localization. However, the existing methods are unable to perform satisfactorily in many situations, including the presence of limited sensor measurements and training data, detection of minor and progressive damage, and identification of multiclass damage, creating constraints to make them free of user-intervention and implemented using the modern sensors. The main objective of this thesis is to develop algorithms capable of damage identification and localization using limited measurements that can address the limitation of the traditional methods while providing a minimal to no user-intervention damage identification process. The proposed research in this thesis involves casting damage detection problems as non-parametric and autonomous with the least user intervention. Progressive damage identification is presented using novel time-frequency methods, such as synchrosqueezing transform and multivariate empirical mode decomposition, showing improved sensitivity of identifying minor damage over traditional methods. A basis-free method, such as multivariate empirical mode decomposition, is employed for damage localization using limited sensors. The acquired vibration measurement is decomposed into its mono components, and a damage localization index based on modal energy is proposed to overcome the need for a large number of sensors. The limited measurement aspect of damage localization is explored by selecting fewer sensors, and it is shown that with limited measurements, the proposed method is as effective as a total number of measurements equals the number of degrees of freedom of the model. To create an autonomous damage identification framework, Artificial Intelligence-based methods are explored the first time for multiclass damage classification and localization. Due to the lack of availability of a large amount of data, the acquired vibration data is augmented using windowing of the data per damage class. A novel window-based one-dimensional convolutional neural network is explored to classify sequential time-series of vibration measurements with only one hidden layer. The robustness of the proposed method is further evaluated by a suite of parametric and sensitivity analysis. Improvement of this method is further accomplished by implementing a windowed Long Short-term Memory network capable of learning long-term dependencies of the sequential data. Finally, the proposed methods are validated using a suite of experimental and full-scale studies, including a high-rate dynamics experimental testbed, a stadia prototype experimental setup, the MIT green building, and the Z24 bridge
    corecore