13 research outputs found

    Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation

    Full text link
    We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Auto- mated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a ver- sion of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.Comment: Appears in 3rd Annual ACM CCS workshop on Security and Privacy in SmartPhones and Mobile Devices (SPSM'13), Berlin, Germany, 201

    Doctor of Philosophy

    Get PDF
    dissertationToday's smartphones house private and confidential data ubiquitously. Mobile apps running on the devices can leak sensitive information by accident or intentionally. To understand application behaviors before running a program, we need to statically analyze it, tracking what data are accessed, where sensitive data ow, and what operations are performed with the data. However, automated identification of malicious behaviors in Android apps is challenging: First, there is a primary challenge in analyzing object-oriented programs precisely, soundly and efficiently, especially in the presence of exceptions. Second, there is an Android-specific challenge|asynchronous execution of multiple entry points. Third, the maliciousness of any given behavior is application-dependent and subject to human judgment. In this work, I develop a generic, highly precise static analysis of object-oriented code with multiple entry points, on which I construct an eective malware identification system with a human in the loop. Specically, I develop a new analysis-pushdown exception-ow analysis, to generalize the analysis of normal control flows and exceptional flows in object-oriented programs. To rene points-to information, I generalize abstract garbage collection to object-oriented programs and enhance it with liveness analysis for even better precision. To tackle Android-specic challenges, I develop multientry point saturation to approximate the eect of arbitrary asynchronous events. To apply the analysis techniques to security, I develop a static taint- ow analysis to track and propagate tainted sensitive data in the push-down exception-flow framework. To accelerate the speed of static analysis, I develop a compact and ecient encoding scheme, called G odel hashes, and integrate it into the analysis framework. All the techniques are realized and evaluated in a system, named AnaDroid. AnaDroid is designed with a human in the loop to specify analysis conguration, properties of interest and then to make the nal judgment and identify where the maliciousness is, based on analysis results. The analysis results include control- ow graphs highlighting suspiciousness, permission and risk-ranking reports. The experiments show that AnaDroid can lead to precise and fast identication of common classes of Android malware

    Pruning, Pushdown Exception-Flow Analysis

    Full text link
    Statically reasoning in the presence of exceptions and about the effects of exceptions is challenging: exception-flows are mutually determined by traditional control-flow and points-to analyses. We tackle the challenge of analyzing exception-flows from two angles. First, from the angle of pruning control-flows (both normal and exceptional), we derive a pushdown framework for an object-oriented language with full-featured exceptions. Unlike traditional analyses, it allows precise matching of throwers to catchers. Second, from the angle of pruning points-to information, we generalize abstract garbage collection to object-oriented programs and enhance it with liveness analysis. We then seamlessly weave the techniques into enhanced reachability computation, yielding highly precise exception-flow analysis, without becoming intractable, even for large applications. We evaluate our pruned, pushdown exception-flow analysis, comparing it with an established analysis on large scale standard Java benchmarks. The results show that our analysis significantly improves analysis precision over traditional analysis within a reasonable analysis time.Comment: 14th IEEE International Working Conference on Source Code Analysis and Manipulatio

    Fast Flow Analysis with Godel Hashes

    Full text link
    Abstract—Flow analysis, such as control-flow, data-flow, and exception-flow analysis, usually depends on relational operations on flow sets. Unfortunately, set related operations, such as inclusion and equality, are usually very expensive. They can easily take more than 97 % of the total analyzing time, even in a very simple analysis. We attack this performance bottleneck by proposing Gödel hashes to enable fast and precise flow analysis. Gödel hashes is an ultra compact, partial-order-preserving, fast and perfect hashing mechanism, inspired by the proofs of Gödel’s incompleteness theorems. Compared with array-, tree-, traditional hash-, and bit vector-backed set implementations, we find Gödel hashes to be tens or even hundreds of times faster for performance in the critical operations of inclusion and equality. We apply Gödel hashes in real-world analysis for object-oriented programs. The instrumented analysis is tens of times faster than the one with original data structures on DaCapo benchmarks. I

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationControl-flow analysis of higher-order languages is a difficult problem, yet an important one. It aids in enabling optimizations, improved reliability, and improved security of programs written in these languages. This dissertation explores three techniques to improve the precision and speed of a small-step abstract interpreter: using a priority work list, environment unrolling, and strong function call. In an abstract interpreter, the interpreter is no longer deterministic and choices can be made in how the abstract state space is explored and trade-offs exist. A priority queue is one option. There are also many ways to abstract the concrete interpreter. Environment unrolling gives a slightly different approach than is usually taken, by holding off abstraction in order to gain precision, which can lead to a faster analysis. Strong function call is an approach to clean up some of the imprecision when making a function call that is introduced when abstractly interpreting a program. An alternative approach to building an abstract interpreter to perform static analysis is through the use of constraint solving. Existing techniques to do this have been developed over the last several decades. This dissertation maps these constraints to three different problems, allowing control-flow analysis of higher-order languages to be solved with tools that are already mature and well developed. The control-flow problem is mapped to pointer analysis of first-order languages, SAT, and linear-algebra operations. These mappings allow for fast and parallel implementations of control-flow analysis of higher-order languages. A recent development in the field of static analysis has been pushdown control-flow analysis, which is able to precisely match calls and returns, a weakness in the existing techniques. This dissertation also provides an encoding of pushdown control-flow analysis to linear-algebra operations. In the process, it demonstrates that under certain conditions (monovariance and flow insensitivity) that in terms of precision, a pushdown control-flow analysis is in fact equivalent to a direct style constraint-based formulation

    Doctor of Philosophy

    Get PDF
    dissertationIn computer science, functional software testing is a method of ensuring that software gives expected output on specific inputs. Software testing is conducted to ensure desired levels of quality in light of uncertainty resulting from the complexity of software. Most of today's software is written by people and software development is a creative activity. However, due to the complexity of computer systems and software development processes, this activity leads to a mismatch between the expected software functionality and the implemented one. If not addressed in a timely and proper manner, this mismatch can cause serious consequences to users of the software, such as security and privacy breaches, financial loss, and adversarial human health issues. Because of manual effort, software testing is costly. Software testing that is performed without human intervention is automatic software testing and it is one way of addressing the issue. In this work, we build upon and extend several techniques for automatic software testing. The techniques do not require any guidance from the user. Goals that are achieved with the techniques are checking for yet unknown errors, automatically testing object-oriented software, and detecting malicious software. To meet these goals, we explored several techniques and related challenges: automatic test case generation, runtime verification, dynamic symbolic execution, and the type and size of test inputs for efficient detection of malicious software via machine learning. Our work targets software written in the Java programming language, though the techniques are general and applicable to other languages. We performed an extensive evaluation on freely available Java software projects, a flight collision avoidance system, and thousands of applications for the Android operating system. Evaluation results show to what extent dynamic symbolic execution is applicable in testing object-oriented software, they show correctness of the flight system on millions of automatically customized and generated test cases, and they show that simple and relatively small inputs in random testing can lead to effective malicious software detection
    corecore