104 research outputs found

    Formal Executable Models for Automatic Detection of Timing Anomalies

    Get PDF
    A timing anomaly is a counterintuitive timing behavior in the sense that a local fast execution slows down an overall global execution. The presence of such behaviors is inconvenient for the WCET analysis which requires, via abstractions, a certain monotony property to compute safe bounds. In this paper we explore how to systematically execute a previously proposed formal definition of timing anomalies. We ground our work on formal designs of architecture models upon which we employ guided model checking techniques. Our goal is towards the automatic detection of timing anomalies in given computer architecture designs

    Timing Anomalies Reloaded

    Get PDF
    Computing tight WCET bounds in the presence of timing anomalies - found in almost any modern hardware architecture - is a major challenge of timing analysis. In this paper, we renew the discussion about timing anomalies, demonstrating that even simple hardware architectures are prone to timing anomalies. We furthermore complete the list of timing-anomalous cache replacement policies, proving that the most-recently-used replacement policy (MRU) also exhibits a domino effect

    METAMOC: Modular Execution Time Analysis using Model Checking

    Get PDF
    Safe and tight worst-case execution times (WCETs) are important when scheduling hard real-time systems. This paper presents METAMOC, a path-based, modular method, based on model checking and static analysis, that determines safe and tight WCETs for programs running on platforms fea-turing caching and pipelining. The method works by constructing a UPPAAL model of the program being analysed and annotating the model with information from an inter-procedural value analysis. The program model is then combined with a model of the hardware platform, and model checked for the WCET. Through support for the platforms ARM7, ARM9 and ATMEL AVR 8-bit the modularity and retargetability of the method is demonstrated, as only the pipeline needs to be remodelled. Mod-elling the hardware is performed in a state-of-the-art graphical modeling environment. Experiments on the Mälardalen WCET benchmark programs show that taking caching into account yields much tighter WCETs, and that METAMOC is a fast and versatile approach for WCET analysis. 1

    On static execution-time analysis

    Get PDF
    Proving timeliness is an integral part of the verification of safety-critical real-time systems. To this end, timing analysis computes upper bounds on the execution times of programs that execute on a given hardware platform. Modern hardware platforms commonly exhibit counter-intuitive timing behaviour: a locally slower execution can lead to a faster overall execution. Such behaviour challenges efficient timing analysis. In this work, we present and discuss a hardware design, the strictly in-order pipeline, that behaves monotonically w.r.t. the progress of a program's execution. Based on monotonicity, we prove the absence of the aforementioned counter-intuitive behaviour. At least since multi-core processors have emerged, timing analysis separates concerns by analysing different aspects of the system's timing behaviour individually. In this work, we validate the underlying assumption that a timing bound can be soundly composed from individual contributions. We show that even simple processors exhibit counter-intuitive behaviour - a locally slow execution can lead to an even slower overall execution - that impedes the soundness of the composition. We present the compositional base bound analysis that accounts for any such amplifying effects within its timing contribution. This enables a sound compositional analysis even for complex processors. Furthermore, we discuss hardware modifications that enable efficient compositional analyses.Echtzeitsysteme mĂŒssen unter allen UmstĂ€nden beweisbar pĂŒnktlich arbeiten. Zum Beweis errechnet die Zeitanalyse obere Schranken der fĂŒr die AusfĂŒhrung von Programmen auf einer Hardware-Plattform benötigten Zeit. Moderne Hardware-Plattformen sind bekannt fĂŒr unerwartetes Zeitverhalten bei dem eine lokale Verzögerung in einer global schnelleren AusfĂŒhrung resultiert. Solches Zeitverhalten erschwert eine effiziente Analyse. Im Rahmen dieser Arbeit diskutieren wir das Design eines Prozessors mit eingeschrĂ€nkter Fließbandverarbeitung (strictly in-order pipeline), der sich bzgl. des Fortschritts einer ProgrammausfĂŒhrung monoton verhĂ€lt. Wir beweisen, dass Monotonie das oben genannte unerwartete Zeitverhalten verhindert. SpĂ€testens seit dem Einsatz von Mehrkernprozessoren besteht die Zeitanalyse aus einzelnen Teilanalysen welche nur bestimmte Aspekte des Zeitverhaltens betrachten. Eine zentrale Annahme ist hierbei, dass sich die Teilergebnisse zu einer korrekten Zeitschranke zusammensetzen lassen. Im Rahmen dieser Arbeit zeigen wir, dass diese Annahme selbst fĂŒr einfache Prozessoren ungĂŒltig ist, da eine lokale Verzögerung zu einer noch grĂ¶ĂŸeren globalen Verzögerung fĂŒhren kann. FĂŒr bestehende Prozessoren entwickeln wir eine neuartige Teilanalyse, die solche verstĂ€rkenden Effekte berĂŒcksichtigt und somit eine korrekte Komposition von Teilergebnissen erlaubt. FĂŒr zukĂŒnftige Prozessoren beschreiben wir Modifikationen, die eine deutlich effizientere Zeitanalyse ermöglichen

    Computing Execution Times with eXecution Decision Diagrams in the Presence of Out-Of-Order Resources

    Full text link
    Worst-Case Execution Time (WCET) is a key component for the verification of critical real-time applications. Yet, even the simplest microprocessors implement pipelines with concurrently-accessed resources, such as the memory bus shared by fetch and memory stages. Although their in-order pipelines are, by nature, very deterministic, the bus can cause out-of-order accesses to the memory and, therefore, timing anomalies: local timing effects that can have global effects but that cannot be easily composed to estimate the global WCET. To cope with this situation, WCET analyses have to generate important over-estimations in order to preserve safety of the computed times or have to explicitly track all possible executions. In the latter case, the presence of out-of-order behavior leads to a combinatorial blowup of the number of pipeline states for which efficient state abstractions are difficult to design. This paper proposes instead a compact and exact representation of the timings in the pipeline, using eXecution Decision Diagram (XDD) [1]. We show how XDD can be used to model pipeline states all along the execution paths by leveraging the algebraic properties of XDD. This computational model allows to compute the exact temporal behavior at control flow graph level and is amenable to efficiently and precisely support WCET calculation in presence of out-of-order bus accesses. This model is finally experimented on the TACLe benchmark suite and we observe good performance making this approach appropriate for industrial applications

    Design and implementation of WCET analyses : including a case study on multi-core processors with shared buses

    Get PDF
    For safety-critical real-time embedded systems, the worst-case execution time (WCET) analysis — determining an upper bound on the possible execution times of a program — is an important part of the system verification. Multi-core processors share resources (e.g. buses and caches) between multiple processor cores and, thus, complicate the WCET analysis as the execution times of a program executed on one processor core significantly depend on the programs executed in parallel on the concurrent cores. We refer to this phenomenon as shared-resource interference. This thesis proposes a novel way of modeling shared-resource interference during WCET analysis. It enables an efficient analysis — as it only considers one processor core at a time — and it is sound for hardware platforms exhibiting timing anomalies. Moreover, this thesis demonstrates how to realize a timing-compositional verification on top of the proposed modeling scheme. In this way, this thesis closes the gap between modern hardware platforms, which exhibit timing anomalies, and existing schedulability analyses, which rely on timing compositionality. In addition, this thesis proposes a novel method for calculating an upper bound on the amount of interference that a given processor core can generate in any time interval of at most a given length. Our experiments demonstrate that the novel method is more precise than existing methods.Die Analyse der maximalen AusfĂŒhrungszeit (Worst-Case-Execution-Time-Analyse, WCET-Analyse) ist fĂŒr eingebettete Echtzeit-Computer-Systeme in sicherheitskritischen Anwendungsbereichen unerlĂ€sslich. Mehrkernprozessoren erschweren die WCET-Analyse, da einige ihrer Hardware-Komponenten von mehreren Prozessorkernen gemeinsam genutzt werden und die AusfĂŒhrungszeit eines Programmes somit vom Verhalten mehrerer Kerne abhĂ€ngt. Wir bezeichnen dies als Interferenz durch gemeinsam genutzte Komponenten. Die vorliegende Arbeit schlĂ€gt eine neuartige Modellierung dieser Interferenz wĂ€hrend der WCET-Analyse vor. Der vorgestellte Ansatz ist effizient und fĂŒhrt auch fĂŒr Computer-Systeme mit Zeitanomalien zu korrekten Ergebnissen. DarĂŒber hinaus zeigt diese Arbeit, wie ein zeitkompositionales Verfahren auf Basis der vorgestellten Modellierung umgesetzt werden kann. Auf diese Weise schließt diese Arbeit die LĂŒcke zwischen modernen Mikroarchitekturen, die Zeitanomalien aufweisen, und den existierenden Planbarkeitsanalysen, die sich alle auf die KompositionalitĂ€t des Zeitverhaltens verlassen. Außerdem stellt die vorliegende Arbeit ein neues Verfahren zur Berechnung einer oberen Schranke der Menge an Interferenz vor, die ein bestimmter Prozessorkern in einem beliebigen Zeitintervall einer gegebenen LĂ€nge höchstens erzeugen kann. Unsere Experimente zeigen, dass das vorgestellte Berechnungsverfahren prĂ€ziser ist als die existierenden Verfahren.Deutsche Forschungsgemeinschaft (DFG) as part of the Transregional Collaborative Research Centre SFB/TR 14 (AVACS

    Program Analysis as Model Checking

    Get PDF

    Static timing analysis tool validation in the presence of timing anomalies

    Get PDF
    The validation of the timing behavior of a safety-critical embedded software system requires both safe and precise worst-case execution time bounds for the tasks of that system. Such bounds need to be safe to ensure that each component of the software system performs its job in time. Furthermore, the execution time bounds are required to be precise to ensure the (provable) schedulability of the software system. When trying to achieve both safe and precise bounds, timing anomalies are one of the greatest challenges to overcome. Almost every modern hardware architecture shows timing anomalies, which also greatly impacts the analyzability of such architectures with respect to timing. Intuitively spoken, a timing anomaly is a counterintuitive behavior of a hardware architecture, where a good event (e.g., a cache hit) leads to an overall longer execution, whereas the corresponding bad event (in this case, a cache miss) leads to a globally shorter execution time. In the presence of such anomalies, the local worst-case is not always a safe assumption in static timing analysis. To compute safe timing guarantees, any (static) timing analysis has to consider all possible executions. In this thesis we investigate the source of timing anomalies in modern architectures and study instances of timing anomalies found in rather simple hardware architectures. Furthermore we discuss the impact of timing anomalies on static timing analysis. Finally we provide means to validate the result of static timing analysis for such architectures through trace validation.Um das Zeitverhalten eines sicherheitskritischen eingebettenen Softwaresystems zu validieren, benötigt man sichere und prĂ€zise Grenzen fĂŒr die AusfĂŒhrungszeiten der einzelnen Softwaretasks im schlimmsten Falle (Worst-Case). Diese Zeitschranken mĂŒssen zuverlĂ€ssig sein, damit sichergestellt ist, dass jede Komponente des Softwaresystems rechtzeitig ausgefĂŒhrt wird. Zudem mĂŒssen die zuvor bestimmten Zeitschranken so prĂ€size wie möglich sein damit das Softwaresystem als Ganzes (beweisbar) ausfĂŒhrbar ist (Schedulability). FĂŒr die Erreichung dieser beiden Ziele stellen Zeitanomalien eine der grĂ¶ĂŸten HĂŒrden dar. Fast jede moderne Prozessorarchitektur weist Zeitanomalien auf, die einen großen Einfluß auf die Analysierbarkeit solcher Architekturen haben. Eine Zeitanomalie ist ein kontraintuitives Verhalten einer Hardwarearchitektur, bei dem ein lokal gutes Ereignis (z.B., ein Cache Hit) zu einer insgesamt lĂ€ngeren AusfĂŒhrungszeit fĂŒhrt, das entgegengesetzte schlechte Ereignis (in diesem Fall ein Cache Miss) aber eine global kĂŒrzere AusfĂŒhrungszeit mit sich bringt. Weist eine Prozessorarchitektur ein solches Verhalten auf, darf eine Zeitanalyse fĂŒr diese Architektur nicht nur lokal schlechte Ereignisse in Betracht ziehen, um eine obere Schranke der worst-case AusfĂŒhrungszeit fĂŒr einen Task zu ermitteln. Um zuverlĂ€ssige Zeitgarantien zu bestimmen, muss eine Zeitanalyse alle möglichen AusfĂŒhrungszustĂ€nde betrachten, die durch unbekannte HardwarezustĂ€nde entstehen könnten. In dieser Arbeit untersuchen wir die Ursache von Zeitanomalien in modernen Prozessorarchitekturen und betrachten Zeitanomalien, die auch in eher einfachen Prozessoren vorkommen können. Desweiteren diskutieren wir den Einfluß von Zeitanomalien auf statische Zeitanalysen fĂŒr eben solche Architekturen, die dieses nicht-lokale Zeitverhalten aufweisen. Zuletzt zeigen wir, wie mittels Trace Validierung Analyseergebnisse von statischen Zeitanalysen in diesem Kontext ĂŒberprĂŒft werden können
    • 

    corecore