38 research outputs found

    Direction of Arrival with One Microphone, a few LEGOs, and Non-Negative Matrix Factorization

    Get PDF
    Conventional approaches to sound source localization require at least two microphones. It is known, however, that people with unilateral hearing loss can also localize sounds. Monaural localization is possible thanks to the scattering by the head, though it hinges on learning the spectra of the various sources. We take inspiration from this human ability to propose algorithms for accurate sound source localization using a single microphone embedded in an arbitrary scattering structure. The structure modifies the frequency response of the microphone in a direction-dependent way giving each direction a signature. While knowing those signatures is sufficient to localize sources of white noise, localizing speech is much more challenging: it is an ill-posed inverse problem which we regularize by prior knowledge in the form of learned non-negative dictionaries. We demonstrate a monaural speech localization algorithm based on non-negative matrix factorization that does not depend on sophisticated, designed scatterers. In fact, we show experimental results with ad hoc scatterers made of LEGO bricks. Even with these rudimentary structures we can accurately localize arbitrary speakers; that is, we do not need to learn the dictionary for the particular speaker to be localized. Finally, we discuss multi-source localization and the related limitations of our approach.Comment: This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech, and Language processing (TASLP

    HIGH WAVE VECTOR ACOUSTIC METAMATERIALS: FUNDAMENTAL STUDIES AND APPLICATIONS

    Get PDF
    Acoustic metamaterials are artificially engineered structures with subwavelength unit cells that hold extraordinary acoustic properties. Their ability to manipulate acoustic waves in ways that are not readily possible in naturally occurring materials have garnered much attention by researchers in recent years. In this dissertation work, acoustic metamaterials that enable wave propagation with high wave vector values are studied. These materials render several key properties, including energy confinement and transport, wave control enhancement, and enhancement of acoustic radiation, which are exploited for enhancing acoustic wave emission and reception. The dissertation work is summarized as follows. First, to enable experimental studies of the deep subwavelength cavities in these metamaterials, a low dimensional fiber optic probe was developed, which allows direct characterization of the intrinsic properties of the metamaterials without seriously disrupting the acoustic fields. Second, low dimensional acoustic metamaterials for enhancing acoustic reception were realized and studied. These metamaterials were demonstrated to achieve both passive and active functionalities, including passive signal amplification and frequency filtering, as well as active tuning for switching and pulse retardation control. Third, a metamaterial emitter was realized and studied, which is capable of enhancing the radiative properties of an embedded emitter. Parametric studies enhanced the understanding of the effects of different geometric parameters on the radiation performance of the structure. Finally, the metamaterial emitter and receiver were combined to form a metamaterial-based sonar system. For the first time, the superior performance of the metamaterial enhanced sonar system over conventional sonar systems was analytically and experimentally demonstrated. As a proof of concept, a robotic sonar platform equipped with the metamaterial system was shown to possess remarkably better tracking performance compared to the conventional system. Through this dissertation work, an enhanced understanding of high-k acoustic metamaterials has been achieved, and their applications in acoustic sensing, emission enhancement, and sonar systems have been demonstrated

    A Small Acoustic Goniometer for General Purpose Research

    Get PDF
    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of the acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this research. This dissertation focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed

    On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques

    Get PDF
    El control de las propiedades acústicas de los cristales de sonido (CS) necesita del estudio de la distribución de dispersores en la propia estructura y de las propiedades acústicas intrínsecas de dichos dispersores. En este trabajo se presenta un estudio exhaustivo de diferentes distribuciones, así como el estudio de la mejora de las propiedades acústicas de CS constituidos por dispersores con propiedades absorbentes y/o resonantes. Estos dos procedimientos, tanto independientemente como conjuntamente, introducen posibilidades reales para el control de la propagación de ondas acústicas a través de los CS. Desde el punto de vista teórico, la propagación de ondas a través de estructuras periódicas y quasiperiódicas se ha analizado mediante los métodos de la dispersión múltiple, de la expansión en ondas planas y de los elementos finitos. En este trabajo se presenta una novedosa extensión del método de la expansión en ondas planas que permite obtener las relaciones complejas de dispersión para los CS. Esta técnica complementa la información obtenida por los métodos clásicos y permite conocer el comportamiento evanescente de los modos en el interior de las bandas de propagación prohibida del CS, así como de los modos localizados alrededor de posibles defectos puntuales en CS. La necesidad de medidas precisas de las propiedades acústicas de los CS ha provocado el desarrollo de un novedoso sistema tridimensional que sincroniza el movimiento del receptor y la adquisición de señales temporales. Los resultados experimentales obtenidos en este trabajo muestran una gran similitud con los resultados teóricos. La actuación conjunta de distribuciones de dispersores optimizadas y de las propiedades intrínsecas de éstos, se aplica para la generación de dispositivos que presentan un rango amplio de frecuencias atenuadas. Se presenta una alternativa a las barreras acústicas tradicionales basada en CS donde se puede controlar el paso de ondas a su través. Los resultados ayudan a entender correctamente el funcionamiento de los CS para la localización de sonido, y para el guiado y filtrado de ondas acústicas.Romero García, V. (2010). On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8982Palanci

    Numerical tools for computational design of acoustic metamaterials

    Get PDF
    The notion of metamaterials as artificially engineered structures designed to obtain specific material properties, typically unachievable in naturally occurring materials, has captured the attention of the scientific and industrial communities. Among the broad range of applications for such kind of materials, in the field of acoustics, the possibility of creating materials capable of efficiently attenuating noise in target frequency ranges is of utmost importance for a lot of industrial areas. In this context, the so-called locally resonant acoustic metamaterials (LRAMs) can play an important role, as their internal topology can be designed to exhibit huge levels of attenuation in specific frequency regions by taking advantage of internal resonance modes. With a proper, optimized topological design, LRAMs can be used, for instance, to build lightweight and thin noise insulation panels that operate in a low-frequency regime, where standard solutions for effectively attenuating the noise sources require dense and thick materials. Given the importance of the topological structure in obtaining the desired properties in acoustic metamaterials, the use of novel numerical techniques can be exploited to cre-ate a set of computational tools aimed at the analysis and design of optimized solutions. These are based on three fundamental pillars: (1) the multiscale homogenization of complex material structures in the microscale to get a set of effective properties capa-ble of describing the material behavior in the macroscale, (2) the model-order reduc-tion techniques, which are used to decrease the computational cost of heavy computa-tions while still maintaining a sufficient degree of accuracy, and (3) the topology optimi-zation methods that can be employed to obtain optimal configurations with a given set of constraints and a target material behavior. This set of computational tools can be applied to design acoustic metamaterials that are both efficient and practical, i.e. they behave according to their design specifications and can be produced easily, for in-stance, making use of novel additive manufacturing techniques.La concepció dels metamaterials com a estructures dissenyades artificialment amb l’objectiu d’obtenir un conjunt de propietats que no són assolibles en materials de manera natural, ha captat l’atenció de les comunitats científiques i industrials. Dins de l’ampli ventall d’aplicacions que se’ls pot donar als metamaterials, si ens centrem en el camp de l’acústica, la possibilitat de crear un material capaç d’atenuar de manera efectiva sorolls en rangs de freqüència concrets és de gran interès en multitud d’indústries. En aquest context, els anomenats “locally resonant acoustic metamaterials” (LRAMs) destaquen per la possibilitat de dissenyar la seva topologia interna per tal que produeixin elevats nivells d’atenuació en regions concretes de l’espectre de freqüències. Amb un disseny topològic òptim, els LRAMs poden servir, per exemple, per a la construcció de panells lleugers aïllants de soroll, que operin en rangs de freqüències baixos, en els quals la solució clàssica requereix de materials d’elevada densitat i espessor. Donada la importància de l’estructura topològica dels metamaterials acústics en l’obtenció de les propietats desitjades, resulta convenient l’ús de mètodes numèrics punters per al desenvolupament d’un conjunt d’eines computacionals que tinguin per objectiu l’anàlisi i el disseny de solucions òptimes. Tals eines es fonamenten en tres pilars: (1) la homogeneïtzació multiescala d’estructures de material complexes a una escala micro que derivi en l’obtenció de propietats efectives que permetin descriure el comportament del material a una escala macro, (2) tècniques de reducció per minimitzar l’esforç computacional mantenint nivells de precisió suficients i (3) mètodes d’optimització topològica emprats per a l’obtenció de configuracions òptimes donat un conjunt de restriccions i unes propietats de material objectiu. Aquestes eines computacionals es poden aplicar al disseny de metamaterials acústics que resultin eficients i pràctics a la vegada, és a dir, que es comportin segons les especificacions de disseny i siguin fàcilment fabricables, per exemple, mitjançant tècniques punteres d’impressió 3D

    Numerical tools for computational design of acoustic metamaterials

    Get PDF
    Tesi en modalitat de compendi de publicacionsThe notion of metamaterials as artificially engineered structures designed to obtain specific material properties, typically unachievable in naturally occurring materials, has captured the attention of the scientific and industrial communities. Among the broad range of applications for such kind of materials, in the field of acoustics, the possibility of creating materials capable of efficiently attenuating noise in target frequency ranges is of utmost importance for a lot of industrial areas. In this context, the so-called locally resonant acoustic metamaterials (LRAMs) can play an important role, as their internal topology can be designed to exhibit huge levels of attenuation in specific frequency regions by taking advantage of internal resonance modes. With a proper, optimized topological design, LRAMs can be used, for instance, to build lightweight and thin noise insulation panels that operate in a low-frequency regime, where standard solutions for effectively attenuating the noise sources require dense and thick materials. Given the importance of the topological structure in obtaining the desired properties in acoustic metamaterials, the use of novel numerical techniques can be exploited to cre-ate a set of computational tools aimed at the analysis and design of optimized solutions. These are based on three fundamental pillars: (1) the multiscale homogenization of complex material structures in the microscale to get a set of effective properties capa-ble of describing the material behavior in the macroscale, (2) the model-order reduc-tion techniques, which are used to decrease the computational cost of heavy computa-tions while still maintaining a sufficient degree of accuracy, and (3) the topology optimi-zation methods that can be employed to obtain optimal configurations with a given set of constraints and a target material behavior. This set of computational tools can be applied to design acoustic metamaterials that are both efficient and practical, i.e. they behave according to their design specifications and can be produced easily, for in-stance, making use of novel additive manufacturing techniques.La concepció dels metamaterials com a estructures dissenyades artificialment amb l’objectiu d’obtenir un conjunt de propietats que no són assolibles en materials de manera natural, ha captat l’atenció de les comunitats científiques i industrials. Dins de l’ampli ventall d’aplicacions que se’ls pot donar als metamaterials, si ens centrem en el camp de l’acústica, la possibilitat de crear un material capaç d’atenuar de manera efectiva sorolls en rangs de freqüència concrets és de gran interès en multitud d’indústries. En aquest context, els anomenats “locally resonant acoustic metamaterials” (LRAMs) destaquen per la possibilitat de dissenyar la seva topologia interna per tal que produeixin elevats nivells d’atenuació en regions concretes de l’espectre de freqüències. Amb un disseny topològic òptim, els LRAMs poden servir, per exemple, per a la construcció de panells lleugers aïllants de soroll, que operin en rangs de freqüències baixos, en els quals la solució clàssica requereix de materials d’elevada densitat i espessor. Donada la importància de l’estructura topològica dels metamaterials acústics en l’obtenció de les propietats desitjades, resulta convenient l’ús de mètodes numèrics punters per al desenvolupament d’un conjunt d’eines computacionals que tinguin per objectiu l’anàlisi i el disseny de solucions òptimes. Tals eines es fonamenten en tres pilars: (1) la homogeneïtzació multiescala d’estructures de material complexes a una escala micro que derivi en l’obtenció de propietats efectives que permetin descriure el comportament del material a una escala macro, (2) tècniques de reducció per minimitzar l’esforç computacional mantenint nivells de precisió suficients i (3) mètodes d’optimització topològica emprats per a l’obtenció de configuracions òptimes donat un conjunt de restriccions i unes propietats de material objectiu. Aquestes eines computacionals es poden aplicar al disseny de metamaterials acústics que resultin eficients i pràctics a la vegada, és a dir, que es comportin segons les especificacions de disseny i siguin fàcilment fabricables, per exemple, mitjançant tècniques punteres d’impressió 3D.Postprint (published version
    corecore