2,570 research outputs found

    Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data

    Get PDF
    Sound event detection (SED) aims to detect when and recognize what sound events happen in an audio clip. Many supervised SED algorithms rely on strongly labelled data which contains the onset and offset annotations of sound events. However, many audio tagging datasets are weakly labelled, that is, only the presence of the sound events is known, without knowing their onset and offset annotations. In this paper, we propose a time-frequency (T-F) segmentation framework trained on weakly labelled data to tackle the sound event detection and separation problem. In training, a segmentation mapping is applied on a T-F representation, such as log mel spectrogram of an audio clip to obtain T-F segmentation masks of sound events. The T-F segmentation masks can be used for separating the sound events from the background scenes in the time-frequency domain. Then a classification mapping is applied on the T-F segmentation masks to estimate the presence probabilities of the sound events. We model the segmentation mapping using a convolutional neural network and the classification mapping using a global weighted rank pooling (GWRP). In SED, predicted onset and offset times can be obtained from the T-F segmentation masks. As a byproduct, separated waveforms of sound events can be obtained from the T-F segmentation masks. We remixed the DCASE 2018 Task 1 acoustic scene data with the DCASE 2018 Task 2 sound events data. When mixing under 0 dB, the proposed method achieved F1 scores of 0.534, 0.398 and 0.167 in audio tagging, frame-wise SED and event-wise SED, outperforming the fully connected deep neural network baseline of 0.331, 0.237 and 0.120, respectively. In T-F segmentation, we achieved an F1 score of 0.218, where previous methods were not able to do T-F segmentation.Comment: 12 pages, 8 figure

    A joint separation-classification model for sound event detection of weakly labelled data

    Get PDF
    Source separation (SS) aims to separate individual sources from an audio recording. Sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) model trained only on weakly labelled audio data, that is, only the tags of an audio recording are known but the time of the events are unknown. First, we propose a separation mapping from the time-frequency (T-F) representation of an audio to the T-F segmentation masks of the audio events. Second, a classification mapping is built from each T-F segmentation mask to the presence probability of each audio event. In the source separation stage, sources of audio events and time of sound events can be obtained from the T-F segmentation masks. The proposed method achieves an equal error rate (EER) of 0.14 in SED, outperforming deep neural network baseline of 0.29. Source separation SDR of 8.08 dB is obtained by using global weighted rank pooling (GWRP) as probability mapping, outperforming the global max pooling (GMP) based probability mapping giving SDR at 0.03 dB. Source code of our work is published.Comment: Accepted by ICASSP 201

    Polyphonic audio tagging with sequentially labelled data using CRNN with learnable gated linear units

    Get PDF
    Audio tagging aims to detect the types of sound events occurring in an audio recording. To tag the polyphonic audio recordings, we propose to use Connectionist Temporal Classification (CTC) loss function on the top of Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units (GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data (SLD). In GLU-CTC, CTC objective function maps the frame-level probability of labels to clip-level probability of labels. To compare the mapping ability of GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling (GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we also compare the proposed GLU-CTC system with the baseline system, which is a CRNN trained using CTC loss function without GLU. The experiments show that the GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging, outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of 0.837. That means based on the same CRNN model with GLU, the performance of CTC mapping is better than the GMP and GAP mapping. Given both based on the CTC mapping, the CRNN with GLU outperforms the CRNN without GLU.Comment: DCASE2018 Workshop. arXiv admin note: text overlap with arXiv:1808.0193

    Sound Event Detection with Sequentially Labelled Data Based on Connectionist Temporal Classification and Unsupervised Clustering

    Full text link
    Sound event detection (SED) methods typically rely on either strongly labelled data or weakly labelled data. As an alternative, sequentially labelled data (SLD) was proposed. In SLD, the events and the order of events in audio clips are known, without knowing the occurrence time of events. This paper proposes a connectionist temporal classification (CTC) based SED system that uses SLD instead of strongly labelled data, with a novel unsupervised clustering stage. Experiments on 41 classes of sound events show that the proposed two-stage method trained on SLD achieves performance comparable to the previous state-of-the-art SED system trained on strongly labelled data, and is far better than another state-of-the-art SED system trained on weakly labelled data, which indicates the effectiveness of the proposed two-stage method trained on SLD without any onset/offset time of sound events

    Audio Caption: Listen and Tell

    Full text link
    Increasing amount of research has shed light on machine perception of audio events, most of which concerns detection and classification tasks. However, human-like perception of audio scenes involves not only detecting and classifying audio sounds, but also summarizing the relationship between different audio events. Comparable research such as image caption has been conducted, yet the audio field is still quite barren. This paper introduces a manually-annotated dataset for audio caption. The purpose is to automatically generate natural sentences for audio scene description and to bridge the gap between machine perception of audio and image. The whole dataset is labelled in Mandarin and we also include translated English annotations. A baseline encoder-decoder model is provided for both English and Mandarin. Similar BLEU scores are derived for both languages: our model can generate understandable and data-related captions based on the dataset.Comment: accepted by ICASSP201

    Classification of Animal Sound Using Convolutional Neural Network

    Get PDF
    Recently, labeling of acoustic events has emerged as an active topic covering a wide range of applications. High-level semantic inference can be conducted based on main audioeffects to facilitate various content-based applications for analysis, efficient recovery and content management. This paper proposes a flexible Convolutional neural network-based framework for animal audio classification. The work takes inspiration from various deep neural network developed for multimedia classification recently. The model is driven by the ideology of identifying the animal sound in the audio file by forcing the network to pay attention to core audio effect present in the audio to generate Mel-spectrogram. The designed framework achieves an accuracy of 98% while classifying the animal audio on weekly labelled datasets. The state-of-the-art in this research is to build a framework which could even run on the basic machine and do not necessarily require high end devices to run the classification
    • …
    corecore