1,665 research outputs found

    Exact and Approximation Algorithms for Computing Reversal Distances in Genome Rearrangement

    Get PDF
    Genome rearrangement is a research area capturing wide attention in molecular biology. The reversal distance problem is one of the most widely studied models of genome rearrangements in inferring the evolutionary relationship between two genomes at chromosome level. The problem of estimating reversal distance between two genomes is modeled as sorting by reversals. While the problem of sorting signed permutations can have polynomial time solutions, the problem of sorting unsigned permutations has been proven to be NP-hard [4]. This work introduces an exact greedy algorithm for sorting by reversals focusing on unsigned permutations. An improved method of producing cycle decompositions for a 3/2-approximation algorithm and the consideration of 3-cycles for reversal sequences are also presented in this paper

    Polynomial-time sortable stacks of burnt pancakes

    Get PDF
    Pancake flipping, a famous open problem in computer science, can be formalised as the problem of sorting a permutation of positive integers using as few prefix reversals as possible. In that context, a prefix reversal of length k reverses the order of the first k elements of the permutation. The burnt variant of pancake flipping involves permutations of signed integers, and reversals in that case not only reverse the order of elements but also invert their signs. Although three decades have now passed since the first works on these problems, neither their computational complexity nor the maximal number of prefix reversals needed to sort a permutation is yet known. In this work, we prove a new lower bound for sorting burnt pancakes, and show that an important class of permutations, known as "simple permutations", can be optimally sorted in polynomial time.Comment: Accepted pending minor revisio

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    Average-case analysis of perfect sorting by reversals (Journal Version)

    Full text link
    Perfect sorting by reversals, a problem originating in computational genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity permutation, by a sequence of reversals that do not break any common interval. B\'erard et al. (2007) make use of strong interval trees to describe an algorithm for sorting signed permutations by reversals. Combinatorial properties of this family of trees are essential to the algorithm analysis. Here, we use the expected value of certain tree parameters to prove that the average run-time of the algorithm is at worst, polynomial, and additionally, for sufficiently long permutations, the sorting algorithm runs in polynomial time with probability one. Furthermore, our analysis of the subclass of commuting scenarios yields precise results on the average length of a reversal, and the average number of reversals.Comment: A preliminary version of this work appeared in the proceedings of Combinatorial Pattern Matching (CPM) 2009. See arXiv:0901.2847; Discrete Mathematics, Algorithms and Applications, vol. 3(3), 201
    • …
    corecore