3,725 research outputs found

    Communication-Efficient Probabilistic Algorithms: Selection, Sampling, and Checking

    Get PDF
    Diese Dissertation behandelt drei grundlegende Klassen von Problemen in Big-Data-Systemen, für die wir kommunikationseffiziente probabilistische Algorithmen entwickeln. Im ersten Teil betrachten wir verschiedene Selektionsprobleme, im zweiten Teil das Ziehen gewichteter Stichproben (Weighted Sampling) und im dritten Teil die probabilistische Korrektheitsprüfung von Basisoperationen in Big-Data-Frameworks (Checking). Diese Arbeit ist durch einen wachsenden Bedarf an Kommunikationseffizienz motiviert, der daher rührt, dass der auf das Netzwerk und seine Nutzung zurückzuführende Anteil sowohl der Anschaffungskosten als auch des Energieverbrauchs von Supercomputern und der Laufzeit verteilter Anwendungen immer weiter wächst. Überraschend wenige kommunikationseffiziente Algorithmen sind für grundlegende Big-Data-Probleme bekannt. In dieser Arbeit schließen wir einige dieser Lücken. Zunächst betrachten wir verschiedene Selektionsprobleme, beginnend mit der verteilten Version des klassischen Selektionsproblems, d. h. dem Auffinden des Elements von Rang kk in einer großen verteilten Eingabe. Wir zeigen, wie dieses Problem kommunikationseffizient gelöst werden kann, ohne anzunehmen, dass die Elemente der Eingabe zufällig verteilt seien. Hierzu ersetzen wir die Methode zur Pivotwahl in einem schon lange bekannten Algorithmus und zeigen, dass dies hinreichend ist. Anschließend zeigen wir, dass die Selektion aus lokal sortierten Folgen – multisequence selection – wesentlich schneller lösbar ist, wenn der genaue Rang des Ausgabeelements in einem gewissen Bereich variieren darf. Dies benutzen wir anschließend, um eine verteilte Prioritätswarteschlange mit Bulk-Operationen zu konstruieren. Später werden wir diese verwenden, um gewichtete Stichproben aus Datenströmen zu ziehen (Reservoir Sampling). Schließlich betrachten wir das Problem, die global häufigsten Objekte sowie die, deren zugehörige Werte die größten Summen ergeben, mit einem stichprobenbasierten Ansatz zu identifizieren. Im Kapitel über gewichtete Stichproben werden zunächst neue Konstruktionsalgorithmen für eine klassische Datenstruktur für dieses Problem, sogenannte Alias-Tabellen, vorgestellt. Zu Beginn stellen wir den ersten Linearzeit-Konstruktionsalgorithmus für diese Datenstruktur vor, der mit konstant viel Zusatzspeicher auskommt. Anschließend parallelisieren wir diesen Algorithmus für Shared Memory und erhalten so den ersten parallelen Konstruktionsalgorithmus für Aliastabellen. Hiernach zeigen wir, wie das Problem für verteilte Systeme mit einem zweistufigen Algorithmus angegangen werden kann. Anschließend stellen wir einen ausgabesensitiven Algorithmus für gewichtete Stichproben mit Zurücklegen vor. Ausgabesensitiv bedeutet, dass die Laufzeit des Algorithmus sich auf die Anzahl der eindeutigen Elemente in der Ausgabe bezieht und nicht auf die Größe der Stichprobe. Dieser Algorithmus kann sowohl sequentiell als auch auf Shared-Memory-Maschinen und verteilten Systemen eingesetzt werden und ist der erste derartige Algorithmus in allen drei Kategorien. Wir passen ihn anschließend an das Ziehen gewichteter Stichproben ohne Zurücklegen an, indem wir ihn mit einem Schätzer für die Anzahl der eindeutigen Elemente in einer Stichprobe mit Zurücklegen kombinieren. Poisson-Sampling, eine Verallgemeinerung des Bernoulli-Sampling auf gewichtete Elemente, kann auf ganzzahlige Sortierung zurückgeführt werden, und wir zeigen, wie ein bestehender Ansatz parallelisiert werden kann. Für das Sampling aus Datenströmen passen wir einen sequentiellen Algorithmus an und zeigen, wie er in einem Mini-Batch-Modell unter Verwendung unserer im Selektionskapitel eingeführten Bulk-Prioritätswarteschlange parallelisiert werden kann. Das Kapitel endet mit einer ausführlichen Evaluierung unserer Aliastabellen-Konstruktionsalgorithmen, unseres ausgabesensitiven Algorithmus für gewichtete Stichproben mit Zurücklegen und unseres Algorithmus für gewichtetes Reservoir-Sampling. Um die Korrektheit verteilter Algorithmen probabilistisch zu verifizieren, schlagen wir Checker für grundlegende Operationen von Big-Data-Frameworks vor. Wir zeigen, dass die Überprüfung zahlreicher Operationen auf zwei „Kern“-Checker reduziert werden kann, nämlich die Prüfung von Aggregationen und ob eine Folge eine Permutation einer anderen Folge ist. Während mehrere Ansätze für letzteres Problem seit geraumer Zeit bekannt sind und sich auch einfach parallelisieren lassen, ist unser Summenaggregations-Checker eine neuartige Anwendung der gleichen Datenstruktur, die auch zählenden Bloom-Filtern und dem Count-Min-Sketch zugrunde liegt. Wir haben beide Checker in Thrill, einem Big-Data-Framework, implementiert. Experimente mit absichtlich herbeigeführten Fehlern bestätigen die von unserer theoretischen Analyse vorhergesagte Erkennungsgenauigkeit. Dies gilt selbst dann, wenn wir häufig verwendete schnelle Hash-Funktionen mit in der Theorie suboptimalen Eigenschaften verwenden. Skalierungsexperimente auf einem Supercomputer zeigen, dass unsere Checker nur sehr geringen Laufzeit-Overhead haben, welcher im Bereich von 2%2\,\% liegt und dabei die Korrektheit des Ergebnisses nahezu garantiert wird

    Characterizing Coastal Marsh Groundwater Hydrology with Multichannel Electrical Resistivity Tomography

    Get PDF
    Subsurface waters are highly enriched in nutrients compared to surface waters in the coastal salt marsh environment and may, therefore, have a large effect on biogeochemical processes. There have been numerous studies examining marsh platform hydrology, however, there is a lack of information on the hyporheic zone within tidal creeks in coastal salt marsh environments. Hyporheic exchange has been studied in various non-tidal freshwater systems and verified as a significant pathway for solute transport in typical stream settings. The total volume of water cycled through salt marsh tidal creek hyporheic zones could prove to be a significant component of the overall marsh water budget, however, it is difficult to quantify this process. Electrical resistivity tomography (ERT) can be used to measure the changes and composition in porewater fluids, making it an ideal technique to visualize coastal groundwater dynamics. We present time series ERT data showing the development of a hyporheic zone in marsh sediments beneath a typical tidal creek at Waties Island, SC. The formation and dispersal of this zone depends upon tidal creek water level, suggesting very short residence times for pore water in near-creek (1 – 2 meters) sediments. Changes in vertical and horizontal cross-sectional dimensions of the zone through time suggest that shallow marsh sediments surrounding a tidal creek (within 1- 2 meters) are isotropic in terms of tidally pumped pore water infiltration and drainage. Salt buildup and flushing in shallow sediments surrounding tidal creeks is potentially a result of the spatial extent of the tidal hyporheic zone throughout the fortnightly cycle. Ongoing efforts to groundtruth ERT readings will hopefully lead to development of time series resistivity measurements as a tool to estimate pore water flow velocity

    Fragile Complexity of Comparison-Based Algorithms

    Get PDF
    We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We give a number of upper and lower bounds on the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and Heap Construction. The results include both deterministic and randomized upper and lower bounds, and demonstrate a separation between the two settings for a number of problems. The depth of a comparator network is a straight-forward upper bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly easier property than the depth of comparator networks, in the sense that for some problems a fragile complexity equal to the best network depth can be achieved with less total work and that with randomization, even a lower fragile complexity is possible
    corecore