8,989 research outputs found

    Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models

    Get PDF
    Many complex multi-target prediction problems that concern large target spaces are characterised by a need for efficient prediction strategies that avoid the computation of predictions for all targets explicitly. Examples of such problems emerge in several subfields of machine learning, such as collaborative filtering, multi-label classification, dyadic prediction and biological network inference. In this article we analyse efficient and exact algorithms for computing the top-KK predictions in the above problem settings, using a general class of models that we refer to as separable linear relational models. We show how to use those inference algorithms, which are modifications of well-known information retrieval methods, in a variety of machine learning settings. Furthermore, we study the possibility of scoring items incompletely, while still retaining an exact top-K retrieval. Experimental results in several application domains reveal that the so-called threshold algorithm is very scalable, performing often many orders of magnitude more efficiently than the naive approach

    TDL--- A Type Description Language for Constraint-Based Grammars

    Full text link
    This paper presents \tdl, a typed feature-based representation language and inference system. Type definitions in \tdl\ consist of type and feature constraints over the boolean connectives. \tdl\ supports open- and closed-world reasoning over types and allows for partitions and incompatible types. Working with partially as well as with fully expanded types is possible. Efficient reasoning in \tdl\ is accomplished through specialized modules.Comment: Will Appear in Proc. COLING-9

    Learning Models over Relational Data using Sparse Tensors and Functional Dependencies

    Full text link
    Integrated solutions for analytics over relational databases are of great practical importance as they avoid the costly repeated loop data scientists have to deal with on a daily basis: select features from data residing in relational databases using feature extraction queries involving joins, projections, and aggregations; export the training dataset defined by such queries; convert this dataset into the format of an external learning tool; and train the desired model using this tool. These integrated solutions are also a fertile ground of theoretically fundamental and challenging problems at the intersection of relational and statistical data models. This article introduces a unified framework for training and evaluating a class of statistical learning models over relational databases. This class includes ridge linear regression, polynomial regression, factorization machines, and principal component analysis. We show that, by synergizing key tools from database theory such as schema information, query structure, functional dependencies, recent advances in query evaluation algorithms, and from linear algebra such as tensor and matrix operations, one can formulate relational analytics problems and design efficient (query and data) structure-aware algorithms to solve them. This theoretical development informed the design and implementation of the AC/DC system for structure-aware learning. We benchmark the performance of AC/DC against R, MADlib, libFM, and TensorFlow. For typical retail forecasting and advertisement planning applications, AC/DC can learn polynomial regression models and factorization machines with at least the same accuracy as its competitors and up to three orders of magnitude faster than its competitors whenever they do not run out of memory, exceed 24-hour timeout, or encounter internal design limitations.Comment: 61 pages, 9 figures, 2 table
    • …
    corecore