390 research outputs found

    Sophisticated security verification on routing repaired balanced cell-based dual-rail logic against side channel analysis

    Get PDF
    Conventional dual-rail precharge logic suffers from difficult implementations of dual-rail structure for obtaining strict compensation between the counterpart rails. As a light-weight and high-speed dual-rail style, balanced cell-based dual-rail logic (BCDL) uses synchronised compound gates with global precharge signal to provide high resistance against differential power or electromagnetic analyses. BCDL can be realised from generic field programmable gate array (FPGA) design flows with constraints. However, routings still exist as concerns because of the deficient flexibility on routing control, which unfavourably results in bias between complementary nets in security-sensitive parts. In this article, based on a routing repair technique, novel verifications towards routing effect are presented. An 8 bit simplified advanced encryption processing (AES)-co-processor is executed that is constructed on block random access memory (RAM)-based BCDL in Xilinx Virtex-5 FPGAs. Since imbalanced routing are major defects in BCDL, the authors can rule out other influences and fairly quantify the security variants. A series of asymptotic correlation electromagnetic (EM) analyses are launched towards a group of circuits with consecutive routing schemes to be able to verify routing impact on side channel analyses. After repairing the non-identical routings, Mutual information analyses are executed to further validate the concrete security increase obtained from identical routing pairs in BCDL

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb–Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.publishedVersio

    Voyager spacecraft. Volume V - Alternate designs, subsystems considerations Study report, phase IA

    Get PDF
    Telecommunication, propulsion, control, electric, and mechanical subsystems design for Voyager spacecraf

    Reliable Design of Three-Dimensional Integrated Circuits

    Get PDF
    • …
    corecore