1,895 research outputs found

    In-situ identification of marine organisms using high frequency, wideband ultrasound

    Get PDF

    Imaging sonar simulator for assessment of image registration techniques

    Get PDF

    A model for the simulation of sidescan sonar

    Get PDF
    This thesis presents the development of a computer model for the simulation of the sidescan sonar process. The motivation for the development of this model is the creation of a unique and powerful visualisation tool to improve understanding and interpretation of the sidescan sonar process and the images created by it. Existing models tend to generate graphical or numerical results, but this model produces synthetic sidescan sonar images as the output. This permits the direct visualisation of the influence of individual parameters and features of the sonar process on the sidescan images. The model considers the main deterministic aspects of the underlying physical processes which result in the generation of sidescan sonar images. These include the propagation of the transmitted pulse of acoustic energy through the water column to its subsequent interaction and scattering from the rough seafloor. The directivity and motion characteristics of the sonar transducer are also incorporated. The thesis documents the development of the model to include each of these phenomena and their subsequent effect on the sidescan sonar images. Finally, techniques are presented for the investigation and verification of the synthetic sidescan images produced by the model.Defence Research Agenc

    Simulation and 3D Reconstruction of Side-Looking Sonar Images

    Get PDF

    Underwater simulation and mapping using imaging sonar through ray theory and Hilbert maps

    Get PDF
    Mapping, sometimes as part of a SLAM system, is an active topic of research and has remarkable solutions using laser scanners, but most of the underwater mapping is focused on 2D maps, treating the environment as a floor plant, or on 2.5D maps of the seafloor. The reason for the problematic of underwater mapping originates in its sensor, i.e. sonars. In contrast to lasers (LIDARs), sonars are unprecise high-noise sensors. Besides its noise, imaging sonars have a wide sound beam effectuating a volumetric measurement. The first part of this dissertation develops an underwater simulator for highfrequency single-beam imaging sonars capable of replicating multipath, directional gain and typical noise effects on arbitrary environments. The simulation relies on a ray theory based method and explanations of how this theory follows from first principles under short-wavelegnth assumption are provided. In the second part of this dissertation, the simulator is combined to a continous map algorithm based on Hilbert Maps. Hilbert maps arise as a machine learning technique over Hilbert spaces, using features maps, applied to the mapping context. The embedding of a sonar response in such a map is a contribution. A qualitative comparison between the simulator ground truth and the reconstucted map reveal Hilbert maps as a promising technique to noisy sensor mapping and, also, indicates some hard to distinguish characteristics of the surroundings, e.g. corners and non smooth features.O mapeamento, às vezes como parte de um sistema SLAM, é um tema de pesquisa ativo e tem soluções notáveis usando scanners a laser, mas a maioria do mapeamento subaquático é focada em mapas 2D, que tratam o ambiente como uma planta, ou mapas 2.5D do fundo do mar. A razão para a dificuldade do mapeamento subaquático origina-se no seu sensor, i.e. sonares. Em contraste com lasers (LIDARs), os sonares são sensores imprecisos e com alto nível de ruído. Além do seu ruído, os sonares do tipo imaging têm um feixe sonoro muito amplo e, com isso, efetuam uma medição volumétrica, ou seja, sobre todo um volume. Na primeira parte dessa dissertação se desenvolve um simulador para sonares do tipo imaging de feixo único de alta frequência capaz de replicar os efeitos típicos de multicaminho, ganho direcional e ruído de fundo em ambientes arbitrários. O simulador implementa um método baseado na teoria geométrica de raios, com todo seu desenvolvimento partindo da acústica subaquática. Na segunda parte dessa dissertação, o simulador é incorporado em um algoritmo de reconstrução de mapas contínuos baseado em Hilbert Maps. Hilbert Maps surge como uma técnica de aprendizado de máquina sobre espaços de Hilbert, usando mapas de características, aplicadas ao contexto de mapeamento. A incorporação de uma resposta de sonar em um tal mapa é uma contribuição desse trabalho. Uma comparação qualitativa entre o ambiente de referência fornecido ao simulador e o mapa reconstruído pela técnica proposta, revela Hilbert Maps como uma técnica promissora para mapeamento atráves de sensores ruidosos e, também, aponta para algumas características do ambiente difíceis de se distinguir, e.g. cantos e regiões não suaves

    Quantifying and Modeling the Effects of Internal Waves on Synthetic Aperture Sonar

    Get PDF
    Synthetic aperture sonar (SAS) is based on synthetic aperture radar, with a number of key factors increasing the complexity of data collection. One of the assumptions made with respect to SAS image reconstruction is the presence of a constant sound speed. As a nearfield imaging system, SAS is sensitive to the breaking of this assumption. The sound speed in the ocean varies with depth. Variations in sound speed can come in the form of internal waves. Internal waves propagating up the slope of the continental shelf are subject to breaking mechanisms that result in the propagation of boluses shoreward. Internal wave boluses are three dimensional features consisting of colder, higher density water. Since the internal wave boluses are composed of colder seawater, the speed of sound is different than in the surrounding environment. The change in sound speed changes the timing and phase of propagating acoustic rays causing degradation in SAS image quality. Not only do the internal waves violate the constant sound speed assumption made by SAS for image formation, but they also influence the travel of acoustic rays due to a geometric lensing effect. The lensing effect causes large refractive effects near the top of the bolus, resulting in a bright region and shadow region within the image. The goal of this study was to quantify the effects of internal waves on SAS image resolution and subsequently model these effects. The quantification of the effects was performed utilizing point targets within the SAS image. The point spread function of the point targets was estimated and used as a proxy for the image resolution and showed that internal waves can cause resolution loss on the order of two to four times than in the absence of a bolus or sound speed error. A numerical ray tracing model was used to estimate the resolution loss in SAS imagery in the presence of internal waves. An analytical model derived in order to better characterize the impacts of internal waves on SAS resolution. Beamforming was also performed over simulated imagery in the presence and absence of internal waves. The models agreed well with each other and the observed resolution loss in collected SAS data. Based on the success of modeling attempts, it is reasonable to develop a method for full inversion for bolus parameters. Given the agreement of the models with data it may be possible to develop methods to compensate for timing errors caused by the presence of internal waves and return the ideal image resolution

    Underwater localization using imaging sonars in 3D environments

    Get PDF
    This work proposes a localization method using a mechanically scanned imaging sonar (MSIS), which stands out by its low cost and weight. The proposed method implements a Particle Filter, a Bayesian Estimator, and introduces a measurement model based on sonar simulation theory. To the best of author’s knowledge, there is no similar approach in the literature, as sonar simulation current methods target in syntethic data generation, mostly for object recognition . This stands as the major contribution of the thesis as allows the introduction of the computation of intensity values provided by imaging sonars, while maitaining compability with the already used methods, such as range extraction. Simulations shows the efficiency of the method as well its viability to the utilization of imaging sonar in underwater localization. The new approach make possible, under certain constraints, the extraction of 3D information from a sensor considered, in the literature, as 2D and also in situations where there is no reference at the same horizontal plane of the sensor transducer scanning axis. The localization in complex 3D environment is also an advantage provided by the proposed method.Este trabalho propõe um método de localização utilizando um sonar do tipo MSIS (Mechanically Scanned Imaging Sonar ), o qual se destaca por seu baixo custo e peso. O método implementa um filtro de partículas, um estimador Bayesiano, e introduz um modelo de medição baseado na teoria de simulação de sonares. No conhecimento do autor não há uma abordagem similar na literatura, uma vez que os métodos atuais de simulação de sonar visam a geração de dados sintéticos para o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging e ao mesmo tempo é compatível com os métodos já utilizados, como extração de distância. Simulações mostram o bom desempenho do método, assim como sua viabilidade para o uso de imaging sonars na localização submarina. A nova abordagem tornou possível, sob certas restrições, a extração de informações 3D de um sensor considerado, na literatura, como somente 2D e também em situações em que não há nehnuma referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A localização em ambientes 3D complexos é também uma vantagem proporcionada pelo método proposto
    corecore