260 research outputs found

    Inversion Polynomials for Permutations Avoiding Consecutive Patterns

    Full text link
    In 2012, Sagan and Savage introduced the notion of stst-Wilf equivalence for a statistic stst and for sets of permutations that avoid particular permutation patterns which can be extended to generalized permutation patterns. In this paper we consider invinv-Wilf equivalence on sets of two or more consecutive permutation patterns. We say that two sets of generalized permutation patterns Π\Pi and Π′\Pi' are invinv-Wilf equivalent if the generating function for the inversion statistic on the permutations that simultaneously avoid all elements of Π\Pi is equal to the generating function for the inversion statistic on the permutations that simultaneously avoid all elements of Π′\Pi'. In 2013, Cameron and Killpatrick gave the inversion generating function for Fibonacci tableaux which are in one-to-one correspondence with the set of permutations that simultaneously avoid the consecutive patterns 321321 and 312.312. In this paper, we use the language of Fibonacci tableaux to study the inversion generating functions for permutations that avoid Π\Pi where Π\Pi is a set of five or fewer consecutive permutation patterns. In addition, we introduce the more general notion of a strip tableaux which are a useful combinatorial object for studying consecutive pattern avoidance. We go on to give the inversion generating functions for all but one of the cases where Π\Pi is a subset of three consecutive permutation patterns and we give several results for Π\Pi a subset of two consecutive permutation patterns

    The number of directed k-convex polyominoes

    Get PDF
    We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyominoes. In this paper, we apply our method to determine the generating function for directed k-convex polyominoes. We show it is a rational function and we study its asymptotic behavior

    Descent sets on 321-avoiding involutions and hook decompositions of partitions

    Full text link
    We show that the distribution of the major index over the set of involutions in S_n that avoid the pattern 321 is given by the q-analogue of the n-th central binomial coefficient. The proof consists of a composition of three non-trivial bijections, one being the Robinson-Schensted correspondence, ultimately mapping those involutions with major index m into partitions of m whose Young diagram fits inside an n/2 by n/2 box. We also obtain a refinement that keeps track of the descent set, and we deduce an analogous result for the comajor index of 123-avoiding involutions

    Avoidance of Partitions of a Three-element Set

    Get PDF
    Klazar defined and studied a notion of pattern avoidance for set partitions, which is an analogue of pattern avoidance for permutations. Sagan considered partitions which avoid a single partition of three elements. We enumerate partitions which avoid any family of partitions of a 3-element set as was done by Simion and Schmidt for permutations. We also consider even and odd set partitions. We provide enumerative results for set partitions restricted by generalized set partition patterns, which are an analogue of the generalized permutation patterns of Babson and Steingr{\'{\i}}msson. Finally, in the spirit of work done by Babson and Steingr{'{\i}}msson, we will show how these generalized partition patterns can be used to describe set partition statistics.Comment: 23 pages, 2 tables, 1 figure, to appear in Advances in Applied Mathematic
    • …
    corecore