61,231 research outputs found

    Quantum learning: optimal classification of qubit states

    Full text link
    Pattern recognition is a central topic in Learning Theory with numerous applications such as voice and text recognition, image analysis, computer diagnosis. The statistical set-up in classification is the following: we are given an i.i.d. training set (X1,Y1),...(Xn,Yn)(X_{1},Y_{1}),... (X_{n},Y_{n}) where XiX_{i} represents a feature and Yi{0,1}Y_{i}\in \{0,1\} is a label attached to that feature. The underlying joint distribution of (X,Y)(X,Y) is unknown, but we can learn about it from the training set and we aim at devising low error classifiers f:XYf:X\to Y used to predict the label of new incoming features. Here we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown qubit states. Given a number of `training' copies from each of the states, we would like to `learn' about them by performing a measurement on the training set. The outcome is then used to design mesurements for the classification of future systems with unknown labels. We find the asymptotically optimal classification strategy and show that typically, it performs strictly better than a plug-in strategy based on state estimation. The figure of merit is the excess risk which is the difference between the probability of error and the probability of error of the optimal measurement when the states are known, that is the Helstrom measurement. We show that the excess risk has rate n1n^{-1} and compute the exact constant of the rate.Comment: 24 pages, 4 figure

    The volume of Gaussian states by information geometry

    Get PDF
    We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resulting statistical manifold with the Fisher-Rao metric. We then evaluate the volume of classical, quantum and quantum entangled states for two-mode systems showing chains of strict inclusion

    Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states

    Get PDF
    We investigate the problem of optimally reversing the action of an arbitrary quantum channel C which acts independently on each component of an ensemble of n identically prepared d-dimensional quantum systems. In the limit of large ensembles, we construct the optimal reversing channel R* which has to be applied at the output ensemble state, to retrieve a smaller ensemble of m systems prepared in the input state, with the highest possible rate m/n. The solution is found by mapping the problem into the optimal reversal of Gaussian channels on quantum-classical continuous variable systems, which is here solved as well. Our general results can be readily applied to improve the implementation of robust long-distance quantum communication. As an example, we investigate the optimal reversal rate of phase flip channels acting on a multi-qubit register.Comment: 17 pages, 3 figure

    Optimal cloning of mixed Gaussian states

    Get PDF
    We construct the optimal 1 to 2 cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.Comment: 8 pages, 1 figure; proof of general form of covariant amplifiers adde

    Quantum mechanics as an approximation of statistical mechanics for classical fields

    Full text link
    We show that, in spite of a rather common opinion, quantum mechanics can be represented as an approximation of classical statistical mechanics. The approximation under consideration is based on the ordinary Taylor expansion of physical variables. The quantum contribution is given by the term of the second order. To escape technical difficulties, we start with the finite dimensional quantum mechanics. In our approach quantum mechanics is an approximative theory. It predicts statistical averages only with some precision. In principle, there might be found deviations of averages calculated within the quantum formalism from experimental averages (which are supposed to be equal to classical averages given by our model).Comment: Talks at the conferences: "Quantum Theory: Reconsideration of Foundations-3", Vaxjo, Sweden, June-2005; "Processes in Physics", Askloster, Sweden, June-2005; "The nature of light: What is photon?", San-Diego, August-2005; "Nonlinear Physics. Theory and Experiment", Lece, Italy, July-200

    Optimal estimation of qubit states with continuous time measurements

    Get PDF
    We propose an adaptive, two steps strategy, for the estimation of mixed qubit states. We show that the strategy is optimal in a local minimax sense for the trace norm distance as well as other locally quadratic figures of merit. Local minimax optimality means that given nn identical qubits, there exists no estimator which can perform better than the proposed estimator on a neighborhood of size n1/2n^{-1/2} of an arbitrary state. In particular, it is asymptotically Bayesian optimal for a large class of prior distributions. We present a physical implementation of the optimal estimation strategy based on continuous time measurements in a field that couples with the qubits. The crucial ingredient of the result is the concept of local asymptotic normality (or LAN) for qubits. This means that, for large nn, the statistical model described by nn identically prepared qubits is locally equivalent to a model with only a classical Gaussian distribution and a Gaussian state of a quantum harmonic oscillator. The term `local' refers to a shrinking neighborhood around a fixed state ρ0\rho_{0}. An essential result is that the neighborhood radius can be chosen arbitrarily close to n1/4n^{-1/4}. This allows us to use a two steps procedure by which we first localize the state within a smaller neighborhood of radius n1/2+ϵn^{-1/2+\epsilon}, and then use LAN to perform optimal estimation.Comment: 32 pages, 3 figures, to appear in Commun. Math. Phy

    Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles

    Full text link
    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.Comment: 69 pages, 31 figure
    corecore