1,029 research outputs found

    MRC4: A Modified RC4 Algorithm using Symmetric Random Function Generator for Improved Cryptographic Features

    Get PDF
    The Rivest Cipher 4 (RC4) has been one of the most popular stream ciphers for providing symmetric key encryption, and is now proposed as an efficient cipher within light-weight cryptography. As an algorithm it has been considered to be one of the fastest stream ciphers and one of the easiest to implement. Unfortunately, despite its simplicity of usage, a number of attacks on it have been found. Therefore, various improvements of this algorithm exist in cryptography, but none of them use proper randomness. This paper outlines modified version of RC4 and which has the desirable features of an efficient stream cipher algorithm, and which integrates the Symmetric Random Function Generator (SRFG) method. Though RC4 uses pseudorandom features with an initialisation vector and a seed value, the use of true randomness in RC4 is novel in this domain. Therefore, this paper proposes a modified RC4 as MRC4, and which then evaluates the statistical features of MRC4 based upon parameters such as non-linearity, resiliency, balancedness, propagation and immunity. Further, we have compared the security features and confusion-diffusion attributes with some recent variants of RC4 and have found that MRC4 is efficient in withstanding against attacks. The experimental results show that MRC4 supports a 60% better confusion property and 50% better diffusion as compared to the original RC4 method

    A novel scrambling algorithm for a robust WEP implementation [wired equivalent privacy protocol]

    Get PDF

    Dynamic Selection of Symmetric Key Cryptographic Algorithms for Securing Data Based on Various Parameters

    Full text link
    Most of the information is in the form of electronic data. A lot of electronic data exchanged takes place through computer applications. Therefore information exchange through these applications needs to be secure. Different cryptographic algorithms are usually used to address these security concerns. However, along with security there are other factors that need to be considered for practical implementation of different cryptographic algorithms like implementation cost and performance. This paper provides comparative analysis of time taken for encryption by seven symmetric key cryptographic algorithms (AES, DES, Triple DES, RC2, Skipjack, Blowfish and RC4) with variation of parameters like different data types, data density, data size and key sizes.Comment: 8 pages, 4 figures, Fifth International Conference on Communications Security & Information Assurance (CSIA 2014) May 24~25, 2014, Delhi, Indi

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007
    • …
    corecore