538,509 research outputs found

    Income Inequality and Health: Lessons from a Residential Assignment Program

    Get PDF
    This paper investigates how income inequality affects health. Although a large literature has shown that inhabitants in areas with greater income inequality suffer from worse health, past studies are severely plagued by inadequate data, non-random residential sorting and reverse causality. We address these problems using longitudinal population hospitalization data coupled with a settlement policy where Swedish authorities distributed newly arrived refugee immigrants to their initial area of residence. The policy was implemented in a way that provides a source of plausibly random variation in initial location. Our empirical analysis reveals no statistically significant effect of income inequality on the probability of being hospitalized. This finding holds also when investigating subgroups more vulnerable to negative health influences and when studying different types of diseases. There is however some indications of a detrimental effect on older persons’ health; but the magnitude of the effect is small. Our estimates are precise enough to rule out large effects of income inequality on health.Income inequality; Immigration; Quasi-experiment

    Understanding Managerial Decisions about Global Sourcing: Offshoring and Reshoring of Production

    Get PDF
    As international commerce continues to emerge due to telecommunication and transportation breakthroughs, the eagerness of companies to send particular business functions offshore increases. Offshoring is the removal of a company function (particularly, manufacturing) from a domestic location to a remote destination. Since many developing economies contain low labor wages, companies in the United States and Europe are able to leverage cost savings by paying low compensation to foreign production employees. The low cost concept, though, does not always offer significant financial reward. For companies with particular product types, business models, or limited experience, offshoring proves to be an expensive mistake that is difficult to reverse. Even so, some U.S. enterprises are reshoring their production function to combat the issues faced in the foreign manufacturing sector. This study aims to investigate the problems of offshoring and proposes a “systems-view” decision framework for global sourcing

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Coarse Projective kMC Integration: Forward/Reverse Initial and Boundary Value Problems

    Full text link
    In "equation-free" multiscale computation a dynamic model is given at a fine, microscopic level; yet we believe that its coarse-grained, macroscopic dynamics can be described by closed equations involving only coarse variables. These variables are typically various low-order moments of the distributions evolved through the microscopic model. We consider the problem of integrating these unavailable equations by acting directly on kinetic Monte Carlo microscopic simulators, thus circumventing their derivation in closed form. In particular, we use projective multi-step integration to solve the coarse initial value problem forward in time as well as backward in time (under certain conditions). Macroscopic trajectories are thus traced back to unstable, source-type, and even sometimes saddle-like stationary points, even though the microscopic simulator only evolves forward in time. We also demonstrate the use of such projective integrators in a shooting boundary value problem formulation for the computation of "coarse limit cycles" of the macroscopic behavior, and the approximation of their stability through estimates of the leading "coarse Floquet multipliers".Comment: Submitted to Journal of Computational Physic

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Linear matching method for design limits in plasticity

    Get PDF
    In this paper a state-of-the-art numerical method is discussed for the evaluation of the shakedown and ratchet limits for an elastic-perfectly plastic body subjected to cyclic thermal and mechanical load history. The limit load or collapse load, i.e. the load carrying capacity, is also determined as a special case of shakedown analysis. These design limits in plasticity have been solved by characterizing the steady cyclic state using a general cyclic minimum theorem. For a prescribed class of kinematically admissible inelastic strain rate histories, the minimum of the functional for these design limits are found by a programming method, the Linear Matching Method (LMM), which converges to the least upper bound. By ensuring that both equilibrium and compatibility are satisfied at each stage, a direct algorithm has also been derived to determine the lower bound of shakedown and ratchet limit using the best residual stress calculated during the LMM procedure. Three practical examples of the LMM are provided to confirm the efficiency and effectiveness of the method: the behaviour of a complex 3D tubeplate in a typical AGR superheater header, the behaviour of a fiber reinforced metal matrix composite under loading and thermal cycling conditions, and effects of drilling holes on the ratchet limit and crack tip plastic strain range fora centre cracked plate subjected to constant tensile loading and cyclic bending moment
    • 

    corecore