2,087 research outputs found

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Deletion codes in the high-noise and high-rate regimes

    Get PDF
    The noise model of deletions poses significant challenges in coding theory, with basic questions like the capacity of the binary deletion channel still being open. In this paper, we study the harder model of worst-case deletions, with a focus on constructing efficiently decodable codes for the two extreme regimes of high-noise and high-rate. Specifically, we construct polynomial-time decodable codes with the following trade-offs (for any eps > 0): (1) Codes that can correct a fraction 1-eps of deletions with rate poly(eps) over an alphabet of size poly(1/eps); (2) Binary codes of rate 1-O~(sqrt(eps)) that can correct a fraction eps of deletions; and (3) Binary codes that can be list decoded from a fraction (1/2-eps) of deletions with rate poly(eps) Our work is the first to achieve the qualitative goals of correcting a deletion fraction approaching 1 over bounded alphabets, and correcting a constant fraction of bit deletions with rate aproaching 1. The above results bring our understanding of deletion code constructions in these regimes to a similar level as worst-case errors

    Linear-Codes-Based Lossless Joint Source-Channel Coding for Multiple-Access Channels

    Full text link
    A general lossless joint source-channel coding (JSCC) scheme based on linear codes and random interleavers for multiple-access channels (MACs) is presented and then analyzed in this paper. By the information-spectrum approach and the code-spectrum approach, it is shown that a linear code with a good joint spectrum can be used to establish limit-approaching lossless JSCC schemes for correlated general sources and general MACs, where the joint spectrum is a generalization of the input-output weight distribution. Some properties of linear codes with good joint spectra are investigated. A formula on the "distance" property of linear codes with good joint spectra is derived, based on which, it is further proved that, the rate of any systematic codes with good joint spectra cannot be larger than the reciprocal of the corresponding alphabet cardinality, and any sparse generator matrices cannot yield linear codes with good joint spectra. The problem of designing arbitrary rate coding schemes is also discussed. A novel idea called "generalized puncturing" is proposed, which makes it possible that one good low-rate linear code is enough for the design of coding schemes with multiple rates. Finally, various coding problems of MACs are reviewed in a unified framework established by the code-spectrum approach, under which, criteria and candidates of good linear codes in terms of spectrum requirements for such problems are clearly presented.Comment: 18 pages, 3 figure
    • …
    corecore