230 research outputs found

    Band Connectivity for Topological Quantum Chemistry: Band Structures As A Graph Theory Problem

    Full text link
    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature 547, 298 (2017)], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local "k-dot-p" band structures across the Brillouin zone in terms of graph theory. In the current manuscript we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph-theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.Comment: 19 pages. Companion paper to arXiv:1703.02050 and arXiv:1706.08529 v2: Accepted version, minor typos corrected and references added. Now 19+epsilon page

    Q-spectral and L-spectral radius of subgroup graphs of dihedral group

    Get PDF
    Research on Q-spectral and L-spectral radius of graph has been attracted many attentions. In other hand, several graphs associated with group have been introduced. Based on the absence of research on Q-spectral and L-spectral radius of subgroup graph of dihedral group, we do this research. We compute Q-spectral and L-spectral radius of subgroup graph of dihedral group and their complement, for several normal subgroups. Q-spectrum and Lspectrum of these graphs are also observed and we conclude that all graphs we discussed in this paper are Q-integral dan L-integral

    Large-eddy simulation of the flow in a lid-driven cubical cavity

    Full text link
    Large-eddy simulations of the turbulent flow in a lid-driven cubical cavity have been carried out at a Reynolds number of 12000 using spectral element methods. Two distinct subgrid-scales models, namely a dynamic Smagorinsky model and a dynamic mixed model, have been both implemented and used to perform long-lasting simulations required by the relevant time scales of the flow. All filtering levels make use of explicit filters applied in the physical space (on an element-by-element approach) and spectral (modal) spaces. The two subgrid-scales models are validated and compared to available experimental and numerical reference results, showing very good agreement. Specific features of lid-driven cavity flow in the turbulent regime, such as inhomogeneity of turbulence, turbulence production near the downstream corner eddy, small-scales localization and helical properties are investigated and discussed in the large-eddy simulation framework. Time histories of quantities such as the total energy, total turbulent kinetic energy or helicity exhibit different evolutions but only after a relatively long transient period. However, the average values remain extremely close

    Learning Harmonic Molecular Representations on Riemannian Manifold

    Full text link
    Molecular representation learning plays a crucial role in AI-assisted drug discovery research. Encoding 3D molecular structures through Euclidean neural networks has become the prevailing method in the geometric deep learning community. However, the equivariance constraints and message passing in Euclidean space may limit the network expressive power. In this work, we propose a Harmonic Molecular Representation learning (HMR) framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface. HMR offers a multi-resolution representation of molecular geometric and chemical features on 2D Riemannian manifold. We also introduce a harmonic message passing method to realize efficient spectral message passing over the surface manifold for better molecular encoding. Our proposed method shows comparable predictive power to current models in small molecule property prediction, and outperforms the state-of-the-art deep learning models for ligand-binding protein pocket classification and the rigid protein docking challenge, demonstrating its versatility in molecular representation learning.Comment: 25 pages including Appendi

    Local-Global Results on Discrete Structures

    Get PDF
    Local-global arguments, or those which glean global insights from local information, are central ideas in many areas of mathematics and computer science. For instance, in computer science a greedy algorithm makes locally optimal choices that are guaranteed to be consistent with a globally optimal solution. On the mathematical end, global information on Riemannian manifolds is often implied by (local) curvature lower bounds. Discrete notions of graph curvature have recently emerged, allowing ideas pioneered in Riemannian geometry to be extended to the discrete setting. Bakry- Émery curvature has been one such successful notion of curvature. In this thesis we use combinatorial implications of Bakry- Émery curvature on graphs to prove a sort of local discrepancy inequality. This then allows us to derive a number of results regarding the local structure of graphs, dependent only on a curvature lower bound. For instance, it turns out that a curvature lower bound implies a nontrivial lower bound on graph connectivity. We also use these results to consider the curvature of strongly regular graphs, a well studied and important class of graphs. In this regard, we give a partial solution to an open conjecture: all SRGs satisfy the curvature condition CD(∞, 2). Finally we transition to consider a facility location problem motivated by using Unmanned Aerial Vehicles (UAVs) to guard a border. Here, we find a greedy algorithm, acting on local geometric information, which finds a near optimal placement of base stations for the guarding of UAVs

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning
    • 

    corecore