98,705 research outputs found

    Pseudo-centrosymmetric matrices, with applications to counting perfect matchings

    Full text link
    We consider square matrices A that commute with a fixed square matrix K, both with entries in a field F not of characteristic 2. When K^2=I, Tao and Yasuda defined A to be generalized centrosymmetric with respect to K. When K^2=-I, we define A to be pseudo-centrosymmetric with respect to K; we show that the determinant of every even-order pseudo-centrosymmetric matrix is the sum of two squares over F, as long as -1 is not a square in F. When a pseudo-centrosymmetric matrix A contains only integral entries and is pseudo-centrosymmetric with respect to a matrix with rational entries, the determinant of A is the sum of two integral squares. This result, when specialized to when K is the even-order alternating exchange matrix, applies to enumerative combinatorics. Using solely matrix-based methods, we reprove a weak form of Jockusch's theorem for enumerating perfect matchings of 2-even symmetric graphs. As a corollary, we reprove that the number of domino tilings of regions known as Aztec diamonds and Aztec pillows is a sum of two integral squares.Comment: v1: Preprint; 11 pages, 7 figures. v2: Preprint; 15 pages, 7 figures. Reworked so that linear algebraic results are over a field not of characteristic 2, not over the real numbers. Accepted, Linear Algebra and its Application

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page
    • …
    corecore