1,258 research outputs found

    Pregeometric Concepts on Graphs and Cellular Networks as Possible Models of Space-Time at the Planck-Scale

    Get PDF
    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face is to find the discrete protoforms of the building blocks of continuum physics and mathematics. In the following we embark on developing such concepts for irregular structures like (large) graphs or networks which are intended to emulate (some of) the generic properties of the presumed combinatorial substratum from which continuum physics is assumed to emerge as a coarse grained and secondary model theory. We briefly indicate how various concepts of discrete (functional) analysis and geometry can be naturally constructed within this framework, leaving a larger portion of the paper to the systematic developement of dimensional concepts and their properties, which may have a possible bearing on various branches of modern physics beyond quantum gravity.Comment: 16 pages, Invited paper to appear in the special issue of the Journal of Chaos, Solitons and Fractals on: "Superstrings, M, F, S ... Theory" (M.S. El Naschie, C. Castro, Editors

    On the lower bound of the inner radius of nodal domains

    No full text
    We discuss the asymptotic lower bound on the inner radius of nodal domains that arise from Laplacian eigenfunctions \varphi _{\lambda} on a closed Riemannian manifold (M, g) . In the real-analytic case, we present an improvement of the currently best-known bounds, due to Mangoubi (Commun Partial Differ Equ 33:1611–1621, 2008; Can Math Bull 51(2):249–260, 2008). Furthermore, using recent results of Hezari (P Am Math Soc, 2016, https://doi.org/10.1090/proc/13766; Anal PDE 11(4):855–871, 2018), we obtain log-type improvements in the case of negative curvature and improved bounds for (M, g) possessing an ergodic geodesic flow

    Simplex and Polygon Equations

    Full text link
    It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a "mixed order." We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of "polygon equations" realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the NN-simplex equation to the (N+1)(N+1)-gon equation, its dual, and a compatibility equation

    Aspects of Algebraic Quantum Theory: a Tribute to Hans Primas

    Full text link
    This paper outlines the common ground between the motivations lying behind Hans Primas' algebraic approach to quantum phenomena and those lying behind David Bohm's approach which led to his notion of implicate/explicate order. This connection has been made possible by the recent application of orthogonal Clifford algebraic techniques to the de Broglie-Bohm approach for relativistic systems with spin.Comment: 18 pages. No figure

    Proof of Swiss Cheese Version of Deligne's Conjecture

    Full text link
    For an associative algebra A we consider the pair "the Hochschild cochain complex C*(A,A) and the algebra A". There is a natural 2-colored operad which acts on this pair. We show that this operad is quasi-isomorphic to the singular chain operad of Voronov's Swiss Cheese operad. This statement is the Swiss Cheese version of the Deligne conjecture formulated by M. Kontsevich in arXiv:math/9904055.Comment: The article was rewritten. Multiple suggestions of referees were addressed. The paper is accepted for publication to IMR
    corecore