96,887 research outputs found

    A Typical Verification Challenge for the GRID

    Get PDF
    A typical verification challenge for the GRID community is\ud presented. The concrete challenge is to implement a simple recursive algorithm for finding the strongly connected components in a graph. The graph is typically stored in the collective memory of a number of computers, so a distributed algorithm is necessary.\ud \ud The implementation should be efficient and scalable, and separate synchronization and implementation details from the purely algorithmic aspects. In the end, a framework is envisaged for distributed algorithms on very large graphs. This would be useful to explore various alternative algorithmic choices

    Marine benthic plants of Western Australia's shelf-edge atolls

    Get PDF
    One hundred and twenty-one species of marine algae, seagrasses and cyanobacteria are reported from the offshore atolls of northwestern Western Australia (the Rowley Shoals, Scott Reef and Seringapatam Reef). Included are 65 species of Rhodophyta, 40 species of Chlorophyta, nine species of Phaeophyceae, three species of Cyanophyta and four species of seagrasses. This report presents the first detailed account of marine benthic algae from these atolls. Twenty-four species are newly recorded for Western Australia, with four species (Anadyomene wrightii, Rhipilia nigrescens, Ceramium krameri and Zellera tawallina) also newly recorded for Australia

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    Longest path distance in random circuits

    Full text link
    We study distance properties of a general class of random directed acyclic graphs (DAGs). In a DAG, many natural notions of distance are possible, for there exists multiple paths between pairs of nodes. The distance of interest for circuits is the maximum length of a path between two nodes. We give laws of large numbers for the typical depth (distance to the root) and the minimum depth in a random DAG. This completes the study of natural distances in random DAGs initiated (in the uniform case) by Devroye and Janson (2009+). We also obtain large deviation bounds for the minimum of a branching random walk with constant branching, which can be seen as a simplified version of our main result.Comment: 21 pages, 2 figure

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset
    corecore