6,606 research outputs found

    Grammars and cellular automata for evolving neural networks architectures

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Nashville, TN, 8-11 October 2000The class of feedforward neural networks trained with back-propagation admits a large variety of specific architectures applicable to approximation pattern tasks. Unfortunately, the architecture design is still a human expert job. In recent years, the interest to develop automatic methods to determine the architecture of the feedforward neural network has increased, most of them based on the evolutionary computation paradigm. From this approach, some perspectives can be considered: at one extreme, every connection and node of architecture can be specified in the chromosome representation using binary bits. This kind of representation scheme is called the direct encoding scheme. In order to reduce the length of the genotype and the search space, and to make the problem more scalable, indirect encoding schemes have been introduced. An indirect scheme under a constructive algorithm, on the other hand, starts with a minimal architecture and new levels, neurons and connections are added, step by step, via some sets of rules. The rules and/or some initial conditions are codified into a chromosome of a genetic algorithm. In this work, two indirect constructive encoding schemes based on grammars and cellular automata, respectively, are proposed to find the optimal architecture of a feedforward neural network

    CHR Grammars

    Full text link
    A grammar formalism based upon CHR is proposed analogously to the way Definite Clause Grammars are defined and implemented on top of Prolog. These grammars execute as robust bottom-up parsers with an inherent treatment of ambiguity and a high flexibility to model various linguistic phenomena. The formalism extends previous logic programming based grammars with a form of context-sensitive rules and the possibility to include extra-grammatical hypotheses in both head and body of grammar rules. Among the applications are straightforward implementations of Assumption Grammars and abduction under integrity constraints for language analysis. CHR grammars appear as a powerful tool for specification and implementation of language processors and may be proposed as a new standard for bottom-up grammars in logic programming. To appear in Theory and Practice of Logic Programming (TPLP), 2005Comment: 36 pp. To appear in TPLP, 200

    Factoring Predicate Argument and Scope Semantics : underspecified Semantics with LTAG

    Get PDF
    In this paper we propose a compositional semantics for lexicalized tree-adjoining grammar (LTAG). Tree-local multicomponent derivations allow separation of the semantic contribution of a lexical item into one component contributing to the predicate argument structure and a second component contributing to scope semantics. Based on this idea a syntax-semantics interface is presented where the compositional semantics depends only on the derivation structure. It is shown that the derivation structure (and indirectly the locality of derivations) allows an appropriate amount of underspecification. This is illustrated by investigating underspecified representations for quantifier scope ambiguities and related phenomena such as adjunct scope and island constraints

    Lexicalization and Grammar Development

    Get PDF
    In this paper we present a fully lexicalized grammar formalism as a particularly attractive framework for the specification of natural language grammars. We discuss in detail Feature-based, Lexicalized Tree Adjoining Grammars (FB-LTAGs), a representative of the class of lexicalized grammars. We illustrate the advantages of lexicalized grammars in various contexts of natural language processing, ranging from wide-coverage grammar development to parsing and machine translation. We also present a method for compact and efficient representation of lexicalized trees.Comment: ps file. English w/ German abstract. 10 page

    Data-Oriented Language Processing. An Overview

    Full text link
    During the last few years, a new approach to language processing has started to emerge, which has become known under various labels such as "data-oriented parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak 1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine & Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This approach, which we will call "data-oriented processing" or "DOP", embodies the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract linguistic rules. The models that instantiate this approach therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance are constructed by combining fragments from the corpus; the occurrence-frequencies of the fragments are used to estimate which analysis is the most probable one. In this paper we give an in-depth discussion of a data-oriented processing model which employs a corpus of labelled phrase-structure trees. Then we review some other models that instantiate the DOP approach. Many of these models also employ labelled phrase-structure trees, but use different criteria for extracting fragments from the corpus or employ different disambiguation strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine & Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema 1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip

    A Processing Model for Free Word Order Languages

    Get PDF
    Like many verb-final languages, Germn displays considerable word-order freedom: there is no syntactic constraint on the ordering of the nominal arguments of a verb, as long as the verb remains in final position. This effect is referred to as ``scrambling'', and is interpreted in transformational frameworks as leftward movement of the arguments. Furthermore, arguments from an embedded clause may move out of their clause; this effect is referred to as ``long-distance scrambling''. While scrambling has recently received considerable attention in the syntactic literature, the status of long-distance scrambling has only rarely been addressed. The reason for this is the problematic status of the data: not only is long-distance scrambling highly dependent on pragmatic context, it also is strongly subject to degradation due to processing constraints. As in the case of center-embedding, it is not immediately clear whether to assume that observed unacceptability of highly complex sentences is due to grammatical restrictions, or whether we should assume that the competence grammar does not place any restrictions on scrambling (and that, therefore, all such sentences are in fact grammatical), and the unacceptability of some (or most) of the grammatically possible word orders is due to processing limitations. In this paper, we will argue for the second view by presenting a processing model for German.Comment: 23 pages, uuencoded compressed ps file. In {\em Perspectives on Sentence Processing}, C. Clifton, Jr., L. Frazier and K. Rayner, editors. Lawrence Erlbaum Associates, 199
    • ā€¦
    corecore