37,186 research outputs found

    Some properties of q-ary functions based on spectral analysis

    Get PDF
    In this paper, we generalize some existing results on Boolean functions to the qq-ary functions defined over \BBZ_q, where q≥2q\geq 2 is an integer, and obtain some new characterization of qq-ary functions based on spectral analysis. We provide a relationship between Walsh-Hadamard spectra of two pp-ary functions ff and gg (for pp a prime) and their derivative Df,gD_{f, g}. We provide a relationship between the Walsh-Hadamard spectra and the decompositions of any two pp-ary functions. Further, we investigate a relationship between the Walsh-Hadamard spectra and the autocorrelation of any two qq-ary functions

    Glauber dynamics on trees:Boundary conditions and mixing time

    Full text link
    We give the first comprehensive analysis of the effect of boundary conditions on the mixing time of the Glauber dynamics in the so-called Bethe approximation. Specifically, we show that spectral gap and the log-Sobolev constant of the Glauber dynamics for the Ising model on an n-vertex regular tree with plus-boundary are bounded below by a constant independent of n at all temperatures and all external fields. This implies that the mixing time is O(log n) (in contrast to the free boundary case, where it is not bounded by any fixed polynomial at low temperatures). In addition, our methods yield simpler proofs and stronger results for the spectral gap and log-Sobolev constant in the regime where there are multiple phases but the mixing time is insensitive to the boundary condition. Our techniques also apply to a much wider class of models, including those with hard-core constraints like the antiferromagnetic Potts model at zero temperature (proper colorings) and the hard--core lattice gas (independent sets)

    On Locally Dyadic Stationary Processes

    Full text link
    We introduce the concept of local dyadic stationarity, to account for non-stationary time series, within the framework of Walsh-Fourier analysis. We define and study the time varying dyadic ARMA models (tvDARMA). It is proven that the general tvDARMA process can be approximated locally by either a tvDMA and a tvDAR process.Comment: 27 pages, 2 figure

    Codes as fractals and noncommutative spaces

    Get PDF
    We consider the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces constructed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian group actions on Cuntz algebras and fractals associated to the classical codes.Comment: 18 pages LaTeX, one png figur

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    Wavelet analysis on symbolic sequences and two-fold de Bruijn sequences

    Full text link
    The concept of symbolic sequences play important role in study of complex systems. In the work we are interested in ultrametric structure of the set of cyclic sequences naturally arising in theory of dynamical systems. Aimed at construction of analytic and numerical methods for investigation of clusters we introduce operator language on the space of symbolic sequences and propose an approach based on wavelet analysis for study of the cluster hierarchy. The analytic power of the approach is demonstrated by derivation of a formula for counting of {\it two-fold de Bruijn sequences}, the extension of the notion of de Bruijn sequences. Possible advantages of the developed description is also discussed in context of applied
    • …
    corecore