26,780 research outputs found

    On αrγs(k)-perfect graphs

    Get PDF
    AbstractFor some integer k⩾0 and two graph parameters π and τ, a graph G is called πτ(k)-perfect, if π(H)−τ(H)⩽k for every induced subgraph H of G. For r⩾1 let αr and γr denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of α1γ1(k)-perfect graphs in terms of forbidden induced subgraphs. In this paper we study αrγs(k)-perfect graphs for r,s⩾1. We prove several properties of minimal αrγs(k)-imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize α2r−1γr(k)-perfect graphs for r⩾1. Furthermore, we characterize claw-free α2γ2(k)-perfect graphs

    A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

    Full text link
    Gy{\'a}rf{\'a}s et al. and Zaker have proven that the Grundy number of a graph GG satisfies Γ(G)≥t\Gamma(G)\ge t if and only if GG contains an induced subgraph called a tt-atom.The family of tt-atoms has bounded order and contains a finite number of graphs.In this article, we introduce equivalents of tt-atoms for b-coloring and partial Grundy coloring.This concept is used to prove that determining if φ(G)≥t\varphi(G)\ge t and ∂Γ(G)≥t\partial\Gamma(G)\ge t (under conditions for the b-coloring), for a graph GG, is in XP with parameter tt.We illustrate the utility of the concept of tt-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 77

    Multiparticle entanglement purification for two-colorable graph states

    Full text link
    We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes e.g. cluster states, GHZ states and codewords of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio

    Combinatorial symbolic powers

    Get PDF
    Symbolic powers are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blowups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of secants of monomial ideals. We use Gr\"obner degenerations as a tool to reduce questions about symbolic powers of arbitrary ideals to the monomial case. Among the applications are a new, unified approach to the Gr\"obner bases of symbolic powers of determinantal and Pfaffian ideals.Comment: 29 pages, 3 figures, Positive characteristic results incorporated into main body of pape
    • …
    corecore