3,109 research outputs found

    p-Adic Invariant Summation of Some p-Adic Functional Series

    Get PDF
    We consider summation of some finite and infinite functional p-adic series with factorials. In particular, we are interested in the infinite series which are convergent for all primes p, and have the same integer value for an integer argument. In this paper, we present rather large class of such p-adic functional series with integer coefficients which contain factorials. By recurrence relations, we constructed sequence of polynomials A_k(n;x) which are a generator for a few other sequences also relevant to some problems in number theory and combinatorics.Comment: 11 page

    Pseudo-factorials, elliptic functions, and continued fractions

    Full text link
    This study presents miscellaneous properties of pseudo-factorials, which are numbers whose recurrence relation is a twisted form of that of usual factorials. These numbers are associated with special elliptic functions, most notably, a Dixonian and a Weierstrass function, which parametrize the Fermat cubic curve and are relative to a hexagonal lattice. A continued fraction expansion of the ordinary generating function of pseudo-factorials, first discovered empirically, is established here. This article also provides a characterization of the associated orthogonal polynomials, which appear to form a new family of "elliptic polynomials", as well as various other properties of pseudo-factorials, including a hexagonal lattice sum expression and elementary congruences.Comment: 24 pages; with correction of typos and minor revision. To appear in The Ramanujan Journa

    Perturbation Theory around Non-Nested Fermi Surfaces I. Keeping the Fermi Surface Fixed

    Full text link
    The perturbation expansion for a general class of many-fermion systems with a non-nested, non-spherical Fermi surface is renormalized to all orders. In the limit as the infrared cutoff is removed, the counterterms converge to a finite limit which is differentiable in the band structure. The map from the renormalized to the bare band structure is shown to be locally injective. A new classification of graphs as overlapping or non-overlapping is given, and improved power counting bounds are derived from it. They imply that the only subgraphs that can generate rr factorials in the rthr^{\rm th} order of the renormalized perturbation series are indeed the ladder graphs and thus give a precise sense to the statement that `ladders are the most divergent diagrams'. Our results apply directly to the Hubbard model at any filling except for half-filling. The half-filled Hubbard model is treated in another place.Comment: plain TeX with postscript figures in a uuencoded gz-compressed tar file. Put it on a separate directory before unpacking, since it contains about 40 files. If you have problems, requests or comments, send e-mail to [email protected]
    corecore