123,497 research outputs found

    The principle of pointfree continuity

    Full text link
    In the setting of constructive pointfree topology, we introduce a notion of continuous operation between pointfree topologies and the corresponding principle of pointfree continuity. An operation between points of pointfree topologies is continuous if it is induced by a relation between the bases of the topologies; this gives a rigorous condition for Brouwer's continuity principle to hold. The principle of pointfree continuity for pointfree topologies S\mathcal{S} and T\mathcal{T} says that any relation which induces a continuous operation between points is a morphism from S\mathcal{S} to T\mathcal{T}. The principle holds under the assumption of bi-spatiality of S\mathcal{S}. When S\mathcal{S} is the formal Baire space or the formal unit interval and T\mathcal{T} is the formal topology of natural numbers, the principle is equivalent to spatiality of the formal Baire space and formal unit interval, respectively. Some of the well-known connections between spatiality, bar induction, and compactness of the unit interval are recast in terms of our principle of continuity. We adopt the Minimalist Foundation as our constructive foundation, and positive topology as the notion of pointfree topology. This allows us to distinguish ideal objects from constructive ones, and in particular, to interpret choice sequences as points of the formal Baire space

    Positivity relations on a locale

    Get PDF
    This paper analyses the notion of a positivity relationof Formal Topology from the point of view of the theory of Locales. It is shown that a positivity relation on a locale corresponds to a suitable class of points of its lower powerlocale. In particular, closed subtopologies associated to the positivity relation correspond to overt (that is, with open domain) weakly closed sublocales. Finally, some connection is revealed between positivity relations and localic suplattices (these are algebras for the powerlocale monad)

    Model Checking Spatial Logics for Closure Spaces

    Full text link
    Spatial aspects of computation are becoming increasingly relevant in Computer Science, especially in the field of collective adaptive systems and when dealing with systems distributed in physical space. Traditional formal verification techniques are well suited to analyse the temporal evolution of programs; however, properties of space are typically not taken into account explicitly. We present a topology-based approach to formal verification of spatial properties depending upon physical space. We define an appropriate logic, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. We lift the topological definitions to the more general setting of closure spaces, also encompassing discrete, graph-based structures. We extend the framework with a spatial surrounded operator, a propagation operator and with some collective operators. The latter are interpreted over arbitrary sets of points instead of individual points in space. We define efficient model checking procedures, both for the individual and the collective spatial fragments of the logic and provide a proof-of-concept tool

    Localic completion of uniform spaces

    Full text link
    We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from the product of X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform space, the localic completion lifts its generalised uniform structure to a point-free generalised uniform structure. This point-free structure induces a complete generalised uniform structure on the set of formal points of the localic completion that gives the standard completion of the original gus with Cauchy filters. We extend the localic completion to a full and faithful functor from the category of locally compact uniform spaces into that of overt locally compact completely regular formal topologies. Moreover, we give an elementary characterisation of the cover of the localic completion of a locally compact uniform space that simplifies the existing characterisation for metric spaces. These results generalise the corresponding results for metric spaces by Erik Palmgren. Furthermore, we show that the localic completion of a symmetric gus is equivalent to the point-free completion of the uniform formal topology associated with the gus. We work in Aczel's constructive set theory CZF with the Regular Extension Axiom. Some of our results also require Countable Choice.Comment: 39 page

    Hyperspaces in topological Categories

    Full text link
    Hyperspaces form a powerful tool in some branches of mathematics: lots of fractal and other geometric objects can be viewed as fixed points of some functions in suitable hyperspaces - as well as interesting classes of formal languages in theoretical computer sciences, for example (to illustrate the wide scope of this concept). Moreover, there are many connections between hyperspaces and function spaces in topology. Thus results from hyperspaces help to get new results in function spaces and vice versa. Unfortunately, there ist no natural hyperspace construction known for general topological categories (in contrast to the situation for function spaces). We will shortly present a rather combinatorial idea for the transfer of structure from a set XX to a subset of P(X)\mathfrak{P}(X), just to motivate an interesting question in set theory. Then we will propose and discuss a new approach to define hyperstructures, which works in every cartesian closed topological category, and so applies to every topological category, using it's topological universe hull

    A Few Notes on Formal Balls

    Full text link
    Using the notion of formal ball, we present a few new results in the theory of quasi-metric spaces. With no specific order: every continuous Yoneda-complete quasi-metric space is sober and convergence Choquet-complete hence Baire in its dd-Scott topology; for standard quasi-metric spaces, algebraicity is equivalent to having enough center points; on a standard quasi-metric space, every lower semicontinuous Rˉ+\bar{\mathbb{R}}_+-valued function is the supremum of a chain of Lipschitz Yoneda-continuous maps; the continuous Yoneda-complete quasi-metric spaces are exactly the retracts of algebraic Yoneda-complete quasi-metric spaces; every continuous Yoneda-complete quasi-metric space has a so-called quasi-ideal model, generalizing a construction due to K. Martin. The point is that all those results reduce to domain-theoretic constructions on posets of formal balls

    Density of classical points in eigenvarieties

    Get PDF
    In this short note, we study the geometry of the eigenvariety parametrizing p-adic automorphic forms for GL(1) over a number field, as constructed by Buzzard. We show that if K is not totally real and contains no CM subfield, points in this space arising from classical automorphic forms (i.e. algebraic Grossencharacters of K) are not Zariski-dense in the eigenvariety (as a rigid space); but the eigenvariety posesses a natural formal scheme model, and the set of classical points is Zariski-dense in the formal scheme. We also sketch the theory for GL(2) over an imaginary quadratic field, following Calegari and Mazur, emphasizing the strong formal similarity with the case of GL(1) over a general number field
    • …
    corecore