1,084 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Target localization in MIMO radar systems

    Get PDF
    MIMO (Multiple-Input Multiple-Output) radar systems employ multiple antennas to transmit multiple waveforms and engage in joint processing of the received echoes from the target. MIMO radar has been receiving increasing attention in recent years from researchers, practitioners, and funding agencies. Elements of MIMO radar have the ability to transmit diverse waveforms ranging from independent to fully correlated. MIMO radar offers a new paradigm for signal processing research. In this dissertation, target localization accuracy performance, attainable by the use of MIMO radar systems, configured with multiple transmit and receive sensors, widely distributed over an area, are studied. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and noncoherent processing. The CRLB is shown to be inversely proportional to the signal effective bandwidth in the noncoherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. It is shown that optimization over the sensors\u27 positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUE\u27s utility is in providing a closed-form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area. Coherent processing advantage for target localization relies on time and phase synchronization between transmitting and receiving radars. An analysis of the sensitivity of the localization performance with respect to the variance of phase synchronization error is provided by deriving the hybrid CRLB. The single target case is extended to the evaluation of multiple target localization performance. Thus far, the analysis assumes a stationary target. Study of moving target tracking capabilities is offered through the use of the Bayesian CRLB for the estimation of both target location and velocity. Centralized and decentralized tracking algorithms, inherit to distributed MIMO radar architecture, are proposed and evaluated. It is shown that communication requirements and processing load may be reduced at a relatively low performance cost

    Impairments in ground moving target indicator (GMTI) radar

    Get PDF
    Radars on multiple distributed airborne or ground based moving platforms are of increasing interest, since they can be deployed in close proximity to the event under investigation and thus offer remarkable sensing opportunities. Ground moving target indicator (GMTI) detects and localizes moving targets in the presence of ground clutter and other interference sources. Space-time adaptive processing (STAP) implemented with antenna arrays has been a classical approach to clutter cancellation in airborne radar. One of the challenges with STAP is that the minimum detectable velocity (MDV) of targets is a function of the baseline of the antenna array: the larger the baseline (i.e., the narrower the beam), the lower the MDV. Unfortunately, increasing the baseline of a uniform linear array (ULA) entails a commensurate increase in the number of elements. An alternative approach to increasing the resolution of a radar, is to use a large, but sparse, random array. The proliferation of relatively inexpensive autonomous sensing vehicles, such as unmanned airborne systems, raises the question whether is it possible to carry out GMTI by distributed airborne platforms. A major obstacle to implementing distributed GMTI is the synchronization of autonomous moving sensors. For range processing, GMTI processing relies on synchronized sampling of the signals received at the array, while STAP processing requires time, frequency and phase synchronization for beamforming and interference cancellation. Distributed sensors have independent oscillators, which are naturally not synchronized and are each subject to different stochastic phase drift. Each sensor has its own local oscillator, unlike a traditional array in which all sensors are connected to the same local oscillator. Even when tuned to the same frequency, phase errors between the sensors will develop over time, due to phase instabilities. These phase errors affect a distributed STAP system. In this dissertation, a distributed STAP application in which sensors are moving autonomously is envisioned. The problems of tracking, detection for our proposed architecture are of important. The first part focuses on developing a direct tracking approach to multiple targets by distributed radar sensors. A challenging scenario of a distributed multi-input multi-output (MIMO) radar system (as shown above), in which relatively simple moving sensors send observations to a fusion center where most of the baseband processing is performed, is presented. The sensors are assumed to maintain time synchronization, but are not phase synchronized. The conventional approach to localization by distributed sensors is to estimate intermediate parameters from the received signals, for example time delay or the angle of arrival. Subsequently, these parameters are used to deduce the location and velocity of the target(s). These classical localization techniques are referred to as indirect localization. Recently, new techniques have been developed capable of estimating target location directly from signal measurements, without an intermediate estimation step. The objective is to develop a direct tracking algorithm for multiple moving targets. It is aimed to develop a direct tracking algorithm of targets state parameters using widely distributed moving sensors for multiple moving targets. Potential candidate for the tracker include Extended Kalman Filter. In the second part of the dissertation,the effect of phase noise on space-time adaptive processing in general, and spatial processing in particular is studied. A power law model is assumed for the phase noise. It is shown that a composite model with several terms is required to properly model the phase noise. It is further shown that the phase noise has almost linear trajectories. The effect of phase noise on spatial processing is analyzed. Simulation results illustrate the effect of phase noise on degrading the performance in terms of beam pattern and receiver operating characteristics. A STAP application, in which spatial processing is performed (together with Doppler processing) over a coherent processing interval, is envisioned

    Cooperative multiterminal radar and communication: a new paradigm for 6G mobile networks

    Get PDF
    The impending spectrum congestion imposed by the emergence of new bandwidth-thirsty applications may be mitigated by the integration of radar and classic communications functionalities in a common system. Furthermore, the merger of a sensing component into wireless communication networks has raised interest in recent years and it may become a compelling design objective for 6G. This article presents the evolution of the hitherto separate radar and communication systems towards their amalgam known as a joint radar and communication (RADCOM) system. Explicitly, we propose to integrate a radio sensing component into 6G. We consider an ultra-dense network (UDN) scenario relying on an active multistatic radar configuration and on cooperation between the access points across the entire coverage area. The technological trends required to reach a feasible integration, the applications anticipated and the open research challenges are identified, with an emphasis on high-accuracy network synchronization. The successful integration of these technologies would facilitate centimeter-level resolution, hence supporting compelling high-resolution applications for next-generation networks, such as robotic cars and industrial assembly lines.publishe

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version
    • …
    corecore