726 research outputs found

    High Speed and Low Power Consumption Carry Skip Adder using Binary to Excess-One Converter

    Get PDF
    Arithmetic and Logic Unit (ALU) is a vital component of any CPU. In ALU, adders play a major role not only in addition but also in performing many other basic arithmetic operations like subtraction, multiplication, etc. Thus realizing an efficient adder is required for better performance of an ALU and therefore the processor. For the optimization of speed in adders, the most important factor is carry generation. For the implementation of a fast adder, the generated carry should be driven to the output as fast as possible, thereby reducing the worst path delay which determines the ultimate speed of the digital structure. In conventional carry skip adder the multiplexer is used as a skip logic that provides a better performance and performs an efficient operation with the minimum circuitry. Even though, it affords a significant advantages there may be a large critical path delay revealed by the multiplexer that leads to increase of area usage and power consumption. The basic idea of this paper is to use Binary to Excess-1 Converters (BEC) to achieve lower area and power consumption

    Simulated annealing based datapath synthesis

    Get PDF

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    An adaptive detector implementation for MIMO-OFDM downlink

    Get PDF
    Cognitive radio (CR) systems require flexible and adaptive implementations of signal processing algorithms. An adaptive symbol detector is needed in the baseband receiver chain to achieve the desired flexibility of a CR system. This paper presents a novel design of an adaptive detector as an application-specific instruction-set processor (ASIP). The ASIP template is based on transport triggered architecture (TTA). The processor architecture is designed in such a manner that it can be programmed to support different suboptimal multiple-input multiple-output (MIMO) detection algorithms in a single TTA processor. The linear minimum mean-square error (LMMSE) and three variants of the selective spanning for fast enumeration (SSFE) detection algorithms are considered. The detection algorithm can be switched between the LMMSE and SSFE according to the bit error rate (BER) performance requirement in the TTA processor. The design can be scaled for different antenna configurations and different modulations. Some of the algorithm architecture co-optimization techniques used here are also presented. Unlike most other detector ASIPs, high level language is used to program the processor to meet the time-to-market requirements. The adaptive detector delivers 4.88 - 49.48 Mbps throughput at a clock frequency of 200 MHz on 90 nm technology
    • …
    corecore